Что означает в математике запись у = f(x) — Гипермаркет знаний. Основные свойства функций

Главная / Измена жены

Приведены график и основные свойства экспоненты (е в степени х): область определения, множество значений, основные формулы, производная, интеграл, разложение в степенной ряд, действия с комплексными числами.

Определение

Частные значения

Пусть y(x) = e x . Тогда
.

Экспонента обладает свойствами показательной функции с основанием степени е > 1 .

Область определения, множество значений

Экспонента y(x) = e x определена для всех x .
Ее область определения:
- ∞ < x + ∞ .
Ее множество значений:
0 < y < + ∞ .

Экстремумы, возрастание, убывание

Экспонента является монотонно возрастающей функцией, поэтому экстремумов не имеет. Основные ее свойства представлены в таблице.

Обратная функция

Обратной для экспоненты является натуральный логарифм .
;
.

Производная экспоненты

Производная е в степени х равна е в степени х :
.
Производная n-го порядка:
.
Вывод формул > > >

Интеграл

Комплексные числа

Действия с комплексными числами осуществляются при помощи формулы Эйлера :
,
где есть мнимая единица:
.

Выражения через гиперболические функции

; ;
.

Выражения через тригонометрические функции

; ;
;
.

Разложение в степенной ряд

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

    1) Область определения функции и область значений функции .

    Область определения функции - это множество всех допустимых действительных значений аргумента x (переменной x ), при которых функция y = f(x) определена. Область значений функции - это множество всех действительных значений y , которые принимает функция.

    В элементарной математике изучаются функции только на множестве действительных чисел.

    2) Нули функции .

    Нуль функции – такое значение аргумента, при котором значение функции равно нулю.

    3) Промежутки знакопостоянства функции .

    Промежутки знакопостоянства функции – такие множества значений аргумента, на которых значения функции только положительны или только отрицательны.

    4) Монотонность функции .

    Возрастающая функция (в некотором промежутке) - функция, у которой большему значению аргумента из этого промежутка соответствует большее значение функции.

    Убывающая функция (в некотором промежутке) - функция, у которой большему значению аргумента из этого промежутка соответствует меньшее значение функции.

    5) Четность (нечетность) функции .

    Четная функция - функция, у которой область определения симметрична относительно начала координат и для любого х из области определения выполняется равенство f(-x) = f(x) . График четной функции симметричен относительно оси ординат.

    Нечетная функция - функция, у которой область определения симметрична относительно начала координат и для любого х из области определения справедливо равенство f(-x) = - f(x ). График нечетной функции симметричен относительно начала координат.

    6) Ограниченная и неограниченная функции .

    Функция называется ограниченной, если существует такое положительное число M, что |f(x)| ≤ M для всех значений x . Если такого числа не существует, то функция - неограниченная.

    7) Периодическость функции .

    Функция f(x) - периодическая, если существует такое отличное от нуля число T, что для любого x из области определения функции имеет место: f(x+T) = f(x). Такое наименьшее число называется периодом функции. Все тригонометрические функции являются периодическими. (Тригонометрические формулы).

    19. Основные элементарные функции, их свойства и графики. Применение функ-ций в экономике.

Основные элементарные функции. Их свойства и графики

1. Линейная функция.

Линейной функцией называется функция вида , где х - переменная, а и b - действительные числа.

Число а называют угловым коэффициентом прямой, он равен тангенсу угла наклона этой прямой к положительному направлению оси абсцисс. Графиком линейной функции является прямая линия. Она определяется двумя точками.

Свойства линейной функции

1. Область определения - множество всех действительных чисел: Д(y)=R

2. Множество значений - множество всех действительных чисел: Е(у)=R

3. Функция принимает нулевое значение при или.

4. Функция возрастает (убывает) на всей области определения.

5. Линейная функция непрерывная на всей области определения, дифференцируемая и .

2. Квадратичная функция.

Функция вида , где х - переменная, коэффициенты а, b, с - действительные числа, называетсяквадратичной.

Операция отыскания производной называется дифференцированием.

В результате решения задач об отыскании производных у самых простых (и не очень простых) функций по определению производной как предела отношения приращения к приращению аргумента появились таблица производных и точно определённые правила дифференцирования. Первыми на ниве нахождения производных потрудились Исаак Ньютон (1643-1727) и Готфрид Вильгельм Лейбниц (1646-1716).

Поэтому в наше время, чтобы найти производную любой функции, не надо вычислять упомянутый выше предел отношения приращения функции к приращению аргумента, а нужно лишь воспользоваться таблицей производных и правилами дифференцирования. Для нахождения производной подходит следующий алгоритм.

Чтобы найти производную , надо выражение под знаком штриха разобрать на составляющие простые функции и определить, какими действиями (произведение, сумма, частное) связаны эти функции. Далее производные элементарных функций находим в таблице производных, а формулы производных произведения, суммы и частного - в правилах дифференцирования. Таблица производных и правила дифференцирования даны после первых двух примеров.

Пример 1. Найти производную функции

Решение. Из правил дифференцирования выясняем, что производная суммы функций есть сумма производных функций, т. е.

Из таблицы производных выясняем, что производная "икса" равна единице, а производная синуса - косинусу. Подставляем эти значения в сумму производных и находим требуемую условием задачи производную:

Пример 2. Найти производную функции

Решение. Дифференцируем как производную суммы, в которой второе слагаемое с постоянным множителем, его можно вынести за знак производной:

Если пока возникают вопросы, откуда что берётся, они, как правило, проясняются после ознакомления с таблицей производных и простейшими правилами дифференцирования. К ним мы и переходим прямо сейчас.

Таблица производных простых функций

1. Производная константы (числа). Любого числа (1, 2, 5, 200...), которое есть в выражении функции. Всегда равна нулю. Это очень важно помнить, так как требуется очень часто
2. Производная независимой переменной. Чаще всего "икса". Всегда равна единице. Это тоже важно запомнить надолго
3. Производная степени. В степень при решении задач нужно преобразовывать неквадратные корни.
4. Производная переменной в степени -1
5. Производная квадратного корня
6. Производная синуса
7. Производная косинуса
8. Производная тангенса
9. Производная котангенса
10. Производная арксинуса
11. Производная арккосинуса
12. Производная арктангенса
13. Производная арккотангенса
14. Производная натурального логарифма
15. Производная логарифмической функции
16. Производная экспоненты
17. Производная показательной функции

Правила дифференцирования

1. Производная суммы или разности
2. Производная произведения
2a. Производная выражения, умноженного на постоянный множитель
3. Производная частного
4. Производная сложной функции

Правило 1. Если функции

дифференцируемы в некоторой точке , то в той же точке дифференцируемы и функции

причём

т.е. производная алгебраической суммы функций равна алгебраической сумме производных этих функций.

Следствие. Если две дифференцируемые функции отличаются на постоянное слагаемое, то их производные равны , т.е.

Правило 2. Если функции

дифференцируемы в некоторой точке , то в то же точке дифференцируемо и их произведение

причём

т.е. производная произведения двух функций равна сумме произведений каждой из этих функций на производную другой.

Следствие 1. Постоянный множитель можно выносить за знак производной :

Следствие 2. Производная произведения нескольких дифференцируемых функций равна сумме произведений производной каждого из сомножителей на все остальные.

Например, для трёх множителей:

Правило 3. Если функции

дифференцируемы в некоторой точке и , то в этой точке дифференцируемо и их частное u/v , причём

т.е. производная частного двух функций равна дроби, числитель которой есть разность произведений знаменателя на производную числителя и числителя на производную знаменателя, а знаменатель есть квадрат прежнего числителя.

Где что искать на других страницах

При нахождении производной произведения и частного в реальных задачах всегда требуется применять сразу несколько правил дифференцирования, поэтому больше примеров на эти производные - в статье "Производная произведения и частного функций " .

Замечание. Следует не путать константу (то есть, число) как слагаемое в сумме и как постоянный множитель! В случае слагаемого её производная равна нулю, а в случае постоянного множителя она выносится за знак производных. Это типичная ошибка, которая встречается на начальном этапе изучения производных, но по мере решения уже нескольких одно- двухсоставных примеров средний студент этой ошибки уже не делает.

А если при дифференцировании произведения или частного у вас появилось слагаемое u "v , в котором u - число, например, 2 или 5, то есть константа, то производная этого числа будет равна нулю и, следовательно, всё слагаемое будет равно нулю (такой случай разобран в примере 10).

Другая частая ошибка - механическое решение производной сложной функции как производной простой функции. Поэтому производной сложной функции посвящена отдельная статья. Но сначала будем учиться находить производные простых функций.

По ходу не обойтись без преобразований выражений. Для этого может потребоваться открыть в новых окнах пособия Действия со степенями и корнями и Действия с дробями .

Если Вы ищете решения производных дробей со степенями и корнями, то есть, когда функция имеет вид вроде , то следуйте на занятие "Производная суммы дробей со степенями и корнями ".

Если же перед Вами задача вроде , то Вам на занятие "Производные простых тригонометрических функций".

Пошаговые примеры - как найти производную

Пример 3. Найти производную функции

Решение. Определяем части выражения функции: всё выражение представляет произведение, а его сомножители - суммы, во второй из которых одно из слагаемых содержит постоянный множитель. Применяем правило дифференцирования произведения: производная произведения двух функций равна сумме произведений каждой из этих функций на производную другой:

Далее применяем правило дифференцирования суммы: производная алгебраической суммы функций равна алгебраической сумме производных этих функций. В нашем случае в каждой сумме второе слагаемое со знаком минус. В каждой сумме видим и независимую переменную, производная которой равна единице, и константу (число), производная которой равна нулю. Итак, "икс" у нас превращается в единицу, а минус 5 - в ноль. Во втором выражении "икс" умножен на 2, так что двойку умножаем на ту же единицу как производную "икса". Получаем следующие значения производных:

Подставляем найденные производные в сумму произведений и получаем требуемую условием задачи производную всей функции:

Пример 4. Найти производную функции

Решение. От нас требуется найти производную частного. Применяем формулу дифференцирования частного: производная частного двух функций равна дроби, числитель которой есть разность произведений знаменателя на производную числителя и числителя на производную знаменателя, а знаменатель есть квадрат прежнего числителя. Получаем:

Производную сомножителей в числителе мы уже нашли в примере 2. Не забудем также, что произведение, являющееся вторым сомножителем в числителе в текущем примере берётся со знаком минус:

Если Вы ищете решения таких задач, в которых надо найти производную функции, где сплошное нагромождение корней и степеней, как, например, , то добро пожаловать на занятие "Производная суммы дробей со степенями и корнями" .

Если же Вам нужно узнать больше о производных синусов, косинусов, тангенсов и других тригонометрических функций, то есть, когда функция имеет вид вроде , то Вам на урок "Производные простых тригонометрических функций" .

Пример 5. Найти производную функции

Решение. В данной функции видим произведение, один из сомножителей которых - квадратный корень из независимой переменной, с производной которого мы ознакомились в таблице производных. По правилу дифференцирования произведения и табличному значению производной квадратного корня получаем:

Пример 6. Найти производную функции

Решение. В данной функции видим частное, делимое которого - квадратный корень из независимой переменной. По правилу дифференцирования частного, которое мы повторили и применили в примере 4, и табличному значению производной квадратного корня получаем:

Чтобы избавиться от дроби в числителе, умножаем числитель и знаменатель на .

Если задано множество чисел X и указан способ f , по которому для каждого значения х ЄX ставится в соответствие только одно число у . Тогда считается заданной функция y = f (х ), у которой область определения X (обычно обозначают D (f ) = X ). Множество Y всех значений у , для которых есть как минимум одно значение х ЄX , такое, что y = f (х ), такое множество называют множеством значений функции f (чаще всего обозначают E (f )= Y ).

Или зависимость одной переменной у от другой х , при которой каждому значению переменной х из определенного множества D соответствует единственное значение переменной у , называется функцией .

Функциональную зависимость переменной у от х часто подчеркивают записью у(х), которую читают игрек от икс.

Область определения функции у (х ), т. е. множество значений ее аргумента х , обозначают символом D (y ), который читают дэ от игрек.

Область значений функции у (х ), т. е. множество значений, которые принимает функция у, обозначают символом Е (у ), который читают е от игрек.

Основными способами задания функции являются:

а) аналитический (с помощью формулы y = f (х )). К этому способу можно отнести и случаи, когда функция задается системой уравнений. Если функция задана формулой, то область ее определения составляют все те значения аргумента, при которых выражение, записанное в правой части формулы, имеет значения.

б) табличный (с помощью таблицы соответствующих значений х и у ). Таким способом часто задается температурный режим или курсы валют, но этот способ не такой наглядный, как следующий;

в) графический (с помощью графика). Это один из самых наглядных способов задания функции, поскольку по графику сразу "читаются" изменения. Если функция у (х ) задана графиком, то область ее определения D (y ) есть проекция графика на ось абсцисс, а область значений Е (у ) - проекция графика на ось ординат (смотри рисунок).

г) словестный . Этот способ часто применяется в задачах, а точнее в описании их условия. Обычно этот способ заменяют одним из приведенных выше.

Функции y = f (х ), x ЄX , и y = g (х ), x ЄX , называются тождественно равными на подмножестве М СX , если для каждого x 0 ЄМ справедливо равенство f (х 0) = g (х 0).

График функции y = f (х ) можно представить, как множество таких точек (х ; f (х )) на координатной плоскости, где х - произвольная переменная, из D (f ). Если f (х 0) = 0, где х 0 то точка с координатами (x 0 ; 0) - это точка, в которой график функции y = f (х ) пересекается с осью Оx . Если 0ЄD (f ), то точка (0; f (0)) - это точка, в которой график функции у = f (x ) пересекается с осью Оу .

Число х 0 из D (f ) функции y = f (х ) это нуль функции, тогда, когда f (х 0) = 0.

Промежуток М СD (f ) это промежуток знакопостоянства функции y = f (х ), если либо для произвольного x ЄМ верно f (х ) > 0, либо для произвольного х ЄМ верно f (х ) < 0.

Есть приборы , которые вырисовывают графики зависимостей между величинами. Это барографы - приборы для фиксации зависимости атмосферного давления от времени, термографы - приборы для фиксации зависимости температуры от времени, кардиографы - приборы для графической регистрации деятельности сердца. У термографа есть барабан, он равномерно вращается. Бумаги, намотанной на барабан, касается самописец, который в зависимости от температуры поднимается и опускается и вырисовывает на бумаге определенную линию.

От представления функции формулой можно перейти к ее представлению таблицей и графиком.

При изучении математики очень важно понимать, что такое функция, ее области определения и значения. С помощью исследования функций на экстремум можно решить многие задачи по алгебре. Даже задачи по геометрии иногда сводятся к рассмотрению уравнений геометрических фигур на плоскости.

Материал, представленный в видеоуроке, является продолжением темы построения графиков функций путем различных преобразований. Мы рассмотрим, как строится график функции y= f (kx ), если известен график функции у= f (x ) . В данном случае k - любое действительное число, не равное нулю.

Вначале рассмотрим случай, когда k - положительное число. Для примера построим график функции у= f (3 x ) , если график функции у= f (х) у нас есть. На рисунке на оси координат изображен график у= f ), на котором есть точки с координатами А и В. Выбирая произвольные значения х и подставляя их в функцию у= f (3 x ), находят соответствующие значения функции у . Таким образом, получают точки графика функции у= f (3 x ) А 1 и В 1 , у которых ординаты такие же, как у точек А и В. То есть мы можем сказать, что из графика функции у= f (x ) путемсжатия с коэффициентом k к оси ординат можно получить график функции y= f (kx ) . Важно отметить, что точки пересечения с осью ординатпри сжатии остаются на прежнем месте.

В случае, когда k - отрицательное число, график функции y= f (kx ) преобразовывается из графика функции у= f (x ) путем растяжения от оси ординат с коэффициентом 1/ k .

1) вначале строится часть волны графика функции у = sin х (см. рисунок);

2) т.к. k = 2, выполняется сжатие графика функции у= sinx к оси ординат, коэффициент сжатия равен 2. Находим точку пересечения с осью x . Т.к. график функции у = sin х пересекает ось абсцисс в точке π, то график функции у = sin 2 х пересекает ось абсцисс в точке π/k = π/2.Аналогичным способом находятся все остальные точки графика функции у = sin 2x и по этим точкам строится весь график.

Рассмотрим 2-й пример - построение графика функции у = cos (x/2) .

1) строим часть волны графика функции у = cosх (см. рисунок);

2) т.к. k =1/2, выполняем растяжение графика функции у = sin х от оси ординат с коэффициентом ½.

Найдем точку пересечения графика с осью х . Т.к. график функции у = cos х пересекает ось абсцисс в точке π/2, то график функции у = cos (x/2) пересекает ось абсцисс в точке π. Таким же образом находим все остальные точки графика функции у = cos (x/2) , построим по этим точкам весь график.

Далее рассмотрим вариант построения графика функции y = f (kx ), где k - число отрицательное. Например, при k = -1 функция y = f (kx ) = f (- x ). На рисунке изображен график у= f (х), на котором есть точки с координатами А и В. Выбрав произвольные значения х и подставив их в функцию y = f (- x ), находим соответствующие значения функции у . Получим точки графика функции y = f (- x ) А 1 и В 1 , которые будут симметричны точкам А и В относительно оси ординат. То есть при использовании симметрии относительно оси ординат из графика функции у= f (kx ) получаем график функции y= f (- x ).

Переходим к построению графика функции y = f (kx ) при k<0 на примере функции у = 4 sin (- x/2).

1) построим часть волны графика у = sin х ;

2) т.к. k = 4, выполним растяжение полуволны графика относительно оси абсцисс, где коэффициент растяжения равен 4;

3) выполним симметричное преобразование относительно оси абсцисс;

4) произведем растяжение от оси ординат (коэффициент растяжения равен 2);

5) завершим построение всего графика.

В данном видеоуроке мы подробно рассмотрели, каким образом поэтапно можно построить график функции y= f (kx ) при разных значениях k .

ТЕКСТОВАЯ РАСШИФРОВКА:

Сегодня познакомимся с преобразованием, которое поможет научиться строить график функции у = f (kx)

(игрек равен эф от аргумента, который представляет произведение ка и икс), если известен график функции у = f (x) (игрек равно эф от икс), где ка - любое действительное число (кроме нуля)».

1) Рассмотрим случай, когда k - положительное число на конкретном примере, когда k = 3.То есть нужно построить график функции

у = f (3x) (игрек равен эф от трех икс), если известен график функции у = f (x). Пусть на графике функции у = f (x) есть точка А с координатами (6; 5) и В с координатами (-3; 2). Это значит, что f (6) = 5 и f (- 3) = 2 (эф от шести равно пяти и эф от минус трех равно двум). Проследим за перемещением этих точек при построении графика функции у = f (3x).

Возьмем произвольное значение х = 2, вычислим у, подставив значение х в график функции у = f (3x) , получим, что у = 5. (на экране: у = f (3x) = f (3∙2)= f (6) = 5.) То есть на графике функции у= f (3x) есть точка с А 1 координатами (2; 5). Если же х = - 1, то подставив значение х в график функции у = f (3x), получим значение у= 2.

(На экране: у = f (3x) = f (- 1∙ 3) = f (- 3) = 2.)

То есть на графике функции у= f (3x) есть точка с координатами В 1 (- 1; 2). Итак, на графике функции у = f (3x) есть точки с той же ординатой, что и на графике функции у = f (x), при этом абсцисса точки в два раза меньше по модулю.

То же будет справедливо и для других точек графика функции у = f (x), когда мы будем переходить к графику функции у = f (3x).

Обычно такое преобразование называют сжатием к оси у(игрек) с коэффициентом 3.

Следовательно, график функции у = f (kx) получается из графика функции у = f (x) с помощью сжатия к оси у(игрек) с коэффициентом k. Заметим, что при таком преобразовании на месте остается точка пересечения графика функции у = f (x) с осью ординат.

Если же k меньше единицы, то говорят не о сжатии с коэффициентом k, а о растяжении от оси у с коэффициентом (то есть, если k = , то говорят о растяжении с коэффициентом 4).

ПРИМЕР 1. Построить график функции у = sin 2x (игрек равен синусу двух икс).

Решение. Вначале построим полуволну графика у = sin x на промежутке от ноля до пи. Так как коэффициент равен двум, а значит k - положительное число больше единицы, значит осуществим сжатие графика функции у = sin x к оси ординат с коэффициентом 2. Найдем точку пересечения с осью ОХ. Если график функции у = sin x пересекает ось ОХ в точке π, то график функции у = sin 2x будет пересекать в точке (π: k =π: 2 =)(пи делим на ка равно пи деленное на два равно пи на два). Аналогичным способом найдем все остальные точки графика функции у = sin2 x. Так, точке графика функции у = sin x с координатами (;1) будет соответствовать точка графика функции у = sin 2x с координатами (;1). Таким образом получим одну полуволну графика функции у = sin 2x. Используя периодичность функции построим весь график.

ПРИМЕР 2. Построить график функции у = cos (игрек равен косинусу частного икс и двух).

Решение. Вначале построим полуволну графика у = cos x. Так как k - положительное число меньше е единицы, значит осуществим растяжение графика функции у = cos x от оси ординат с коэффициентом 2.

Найдем точку пересечения с осью ОХ. Если график функции у = cos x пересекает ось ОХ в точке, то график функции у = cos будет пересекать в точке π. (: k =π: = π). Аналогичным способом найдем все остальные точки графика функции у = cos. Таким образом получим одну полуволну искомого графика функции. Используя периодичность функции построим весь график.

Рассмотрим случай, когда k равно минус единице. То есть нужно построить график функции у = f (-x) (игрек равен эф от минус икс), если известен график функции у = f (x). Пусть на графике есть точка А с координатами (4; 5) и точка В (-5; 1). Это значит, что f (4) = 5 и f (- 5) = 1.

Так как при подстановке в формулу у = f (-x) вместо х = - 4 получим у = f (4) = 5, то на графике функции у = f (-x) есть точка с координатами А 1

(- 4 ; 5) (минус четыре, пять). Аналогично, графику функции у = f (-x) принадлежит точка В 1 (5; 1).То есть графику функции у = f (x) принадлежат точки А(4; 5) и В(-5; 1), а графику функции у = f (-x) принадлежат точки А 1 (- 4; 5) и В 1 (5; 1). Эти пары точек симметричны относительно оси ординат.

Следовательно, график функции у = f (-x) с помощью преобразования симметрии относительно оси ординат можно получить из график функции у = f (x).

3) И, наконец, рассмотрим случай, когда k - отрицательное число. Учитывая, что равенство f (kx) = f (- |k|x) (эф от произведения ка на икс равно эф от произведения минус модуля ка и икса) справедливое, то речь идет о построении графика функции у = f (- |k|x), который можно построить поэтапно:

1) построить график функции у = f (x);

2) построенный график подвергнуть сжатию или растяжению к оси ординат с коэффициентом |k| (модуль ка);

3) осуществить преобразование симметрии относительно оси у

(игрек) полученного во втором пункте графика.

ПРИМЕР 3. Построить график функции у = 4 sin (-) (игрек равно четыре, умноженное на синус частного минус икс на два).

Решение. Прежде всего вспомним, что sin(- t) = -sint(синус от минус тэ равно минус синусу тэ), значит, у = 4 sin (-) = - 4 sin (игрек равен минус четырем, умноженным на синус частного икс на два). Строить будем поэтапно:

1) Построим одну полуволну графика функции у= sinх.

2) Осуществим растяжение построенного графика от оси абсцисс с коэффициентом 4 и получим одну полуволну графика функции

у= 4sinх(игрек равно четыре, умноженное на синус икс).

3) К построенной полуволне графика функции у= 4sinх применим преобразование симметрии относительно оси х(икс) и получим полуволну графика функции у= - 4sinх.

4) Для полуволны графика функции у= - 4sinх осуществим растяжение от оси ординат с коэффициентом 2; получим полуволну графика функции - 4 sin .

5) С помощью полученной полуволны построим весь график.

© 2024 skudelnica.ru -- Любовь, измена, психология, развод, чувства, ссоры