Волновые электростанции. Есть ли будущее у волновых электростанций

Главная / Измена жены

. Места с наибольшим потенциалом для волновой энергетики - западное побережье Европы , северное побережье Великобритании и Тихоокеанское побережье Северной , Южной Америки , Австралии и Новой Зеландии , а также побережье Южной Африки [ ] .

История

Первая волновая электростанция

Первая волновая электростанция расположена в районе Агусадора , Португалия , на расстоянии 5 километров от берега. Была официально открыта 23 сентября 2008 года португальским министром экономики. Мощность данной электростанции составляет 2,25 МВт , этого хватает для обеспечения электроэнергией примерно 1600 домов. Первоначально предполагалось, что станция войдёт в эксплуатацию в 2006 году, но развёртывание электростанции произошло на 2 года позже планируемого срока. Проект электростанции принадлежит шотландской компании Pelamis Wave Power, которая в 2005 году заключила контракт с португальской энергетической компанией Enersis на строительство волновой электростанции в Португалии. Стоимость контракта составила 8 миллионов евро.

Параметры электростанции

Электростанция состоит из 3-х устройств под названием Pelamis P-750 (англ.) русск. . Это большие плавающие объекты змеевидного типа, размер каждого:

Мощность одного такого конвертера составляет 750 КВт. Удельные характеристики: мощность 1 кВт/тонну и 650 Вт на м³ конструкции. В электричество превращается примерно 1% энергии волнения. [ ]

Устройство и принцип действия

Pelamis P-750 состоит из секций, между секциями закреплены гидравлические поршни. Внутри каждой секции также есть гидравлические двигатели и электрогенераторы. Под воздействием волн конвертеры качаются на поверхности воды, и это заставляет их изгибаться, за что конструкции стали называть «морскими змеями» («sea-snake») . Движение этих соединений приводит в работу гидравлические поршни, которые, в свою очередь, приводят в движение масло. Масло проходит через гидравлические двигатели. Эти гидравлические двигатели приводят в движение электрические генераторы, которые производят электроэнергию .

Перспективы

В дальнейшем планируется добавить к трём существующем конвертерам ещё 25, что увеличит мощность электростанции с 2,25 МВт до 21 МВт . Такой мощности хватит для обеспечения электроэнергией 15 000 домов и снизит выбросы углекислого газа на 60 000 тонн в год.

Российские разработки

На территории Москвы может быть начато строительства производственного научно-исследовательского предприятия, которое будет разрабатывать модуль поплавковой волновой электростанции. Инвестор планирует строительство опытно-промышленного предприятия, включающего в себя производственную научно-исследовательскую лабораторию.

Другие эксплуатирующиеся и строящиеся волновые электростанции

Преимущества и недостатки волновой энергетики

Существует проблема, связанная с тем, что при создании волновых электростанций штормовые волны гнут и сминают даже стальные лопасти водяных турбин. Поэтому приходится применять методы искусственного снижения мощности, отбираемой от волн.

Преимущества

  • Волновые электростанции могут выполнять роль волногасителей, защищая порты, гавани и берега от разрушения.
  • Маломощные волновые электрогенераторы некоторых типов могут устанавливаться на стенках причалов, опорах мостов, уменьшая воздействие волн на них.
  • Поскольку удельная мощность волнения на 1-2 порядка превышает удельную мощность ветра, волновая энергетика может оказаться более выгодной, чем

Волновая электростанция - энергетическая установка, расположенная в водной среде, целью которой является получение электрической энергии из кинетической энергии морских или океанических волн. Как и приливные, волновые электростанции располагаются на берегу или океане в непосредственной близости ВИЧ берега, с целью экономии средств на прокладку подводных электрокоммуникаций.

Первая волновая электростанция расположена в Португалии на расстоянии 5 километров от берега. Эта волновая станция была открыта 23 сентября 2008 года. Мощность данной электростанции составляет 2,25 МВт, этого достаточно для

Рис. 4.1.

обеспечение электроэнергией примерно 1600 небольших домов.

Принципиальная схема волновой электростанции аналогична принципиальной схеме гидроэлектростанции, однако вместо плотины с падающим потоком воды здесь используется гидрохвильовий преобразователь, преобразующий энергию волн в запасенную в пневмогидроакумулятори энергию рабочей жидкости.

В качестве примера рассмотрим устройство волновой электростанции Pelamis Р 750. Эта волновая электростанция состоит из нескольких устройств, представляют собой плавающие объекты - гидрохвильови поплавковые преобразователи, соединенные в одну цепь. На рис. 4.1. показана схема устройства этой волновой электростанции. Где: 1 - плавающие поплавковые преобразователи; 2-гидравлические поршни; 3 -поверхность волны; 4 - гидромагистралей; 5 - главный корпус; 6 - контрольно-распределительное устройство; 7 аккумулирующий устройство; 8 - отвод к потребителю.

Размер каждого гидрохвильового поплавкового преобразователя: длина 120 метров, диаметр 3,5 метра, вес 7S0 тонн. Между преобразователями каждой секции закреплены гидравлические поршни. Внутри каждой секции также гидравлические двигатели и электрогенераторы. Под воздействием волн конвертеры качаются на поверхности воды, и это заставляет их крутиться. Движение каждой секции приводит в работу гидравлические поршни, которые, в свою очередь, приводят в движение маслу. Масло проходит через гидравлические двигатели. Эти гидравлические двигатели приводят в движение электрические генераторы, которые делают электроэнергию. Мощность одного такого конвертера составляет 750 кВт. В электрическую энергию превращается примерно 1% энергии волн.

Существует много возможностей получения энергии из волн морей и океанов.

Рис. 4.2.

Среди которых наибольшее распространение получили поглотители колебаний - плавающие на поверхности аттенюаторы и установлены на дне приливные турбины. Одним из интересных решений является энергетический буй - полностью автономное устройство. В этом устройстве используется винтовой компрессор, который крепится якорем ко дну и плавает на поверхности. Электроэнергии производится за счет преобразования поршневой системой и электрогенератором вертикальных перемещений буя на волнах. На берег электричество подается по подводному кабелю.

Интересное устройство под названием Searaser разработан в Англии и напоминает волновую электростанцию, использующую энергию вертикального движения поплавка. Однако сам поплавок не имеет электрических систем и представляет обычный механический насос, который закачивает морскую воду на большую высоту в прибрежные скалы. Этот проект получил название - гидроаккумулирующая электростанция, на рис. 4.3. приведено устройство станции: 1- верхний поплавок; 2 - поверхность волны; 3 - нижний поплавок; 4 - клапан; 5 - поршень; 6-шлзнг; 7 - поплавок поддержки шланга; 8, 9 бетонные якоря; 10 - коллектор. Как видно из приведенного рисунка, основой установки есть 2 поплавка, способных двигаться друг относительно друга. Верхний раскачивается волнами, нижний соединен с дном с помощью цепи и якоря. Между поплавками находится "насосная станция" (цилиндр с поршнем двойного действия, КОТОРЫЙ качает воду при движении вниз и вверх) и клапанами с выходными трубами. Автоматическая подстройка высоты положения верхнего поплавка в зависимости от уровня моря, который меняется в прилив и отлив - телескопическая труба, раздвигается и сложная под действием сил Архимеда и тяжести. К этой "приливной" колонне крепится насос с верхним поплавком. Вода, через коллектор подается на сушу, в горы. В горах устраивается бассейн, в котором вода накапливается и выпускается обратно в море, по пути вращая турбину электростанции, идентичной традиционной ГЭС, но без дамбы. Один полноразмерный поплавок Searaser должен развивать мощность до 0,25 МВт. Основная преимущества в подобной установки, по сравнению с другими,

Рис. 4.3. Гидроаккумулирующей электростанции

заключаются в следующем. В поплавки отсутствуют провода, магниты, которые или электрические контакты и герметичные отсеки для оборудования, что делает его гораздо более дешевым, простым и надежным. Турбины и электрогенераторы волновой станции, расположенные на берегу. В отличие от волновых электростанций, других типов, установка Searaser решает проблему неравномерности силы волн.

В волновых устройств с пневматическими преобразователями под действием волн воздушный поток периодически изменяет свое направление на обратное. Для этих условий и разработана турбина Уэллса, ротор которого имеет выпрямляя действие сохраняя неизменным направление своего вращения при смене направления воздушного потока, следовательно, поддерживается неизменным и направление вращения генератора.

Турбина нашла широкое применение в различных волно-энергетических устройствах. Волновой энергетический устройство "кайма" - самая мощная действующая энергетическая установка с пневматическими преобразователями - построена в Японии в 1976 г.. В своей работе она использует волны высотой до 6 -10 м. На барже длиной 80 м, шириной 12 м и водоизмещением 500 т установлены 22 воздушных камеры, открытые снизу. Каждая пара камер работает на одну турбину Уэллса. Общая мощность установки 1000 кВт. Первые испытания были проведены в 1978 - 1979 pp. у города Цуруока. Энергия передавалась на берег по подводному кабелю длиной около 3 км.

В 1985 в Норвегии в 46 км к северо-западу от города Берген построена промышленная волновая станция, состоящая из двух установок. Первая установка на острове Тофтесталлен работала по пневматическому принципу. Она представляла собой железобетонную камеру, углубленную в скале; над ней была установлена стальная башня высотой 12,3 мм и диаметром 3,6 м. Входящие в камеру волны создавали изменение объема воздуха. Возникающий поток через систему клапанов приводил во вращение турбину и связанный с ней генератор мощностью 500 кВт, годовая выработка составил 1200000. КВт. ч. Однако сильным штормом в конце 1988 башня станции была разрушена.

Конструкция второй установки состоит из конусообразного канала в ущелье длиной около 170 м с бетонными стенками высотой 15 м и шириной в основании 55 м, что входит в резервуар между островами, отделенный от моря дамбами, и плотины с энергетической установкой. Волны, проходя по каналу, сужается увеличивают свою высоту с 1,1 до 15 м и вливаются в резервуар, уровень которого на 3 м выше уровня моря. Из резервуара вода проходит через низконапорные гидротурбины мощностью 350 кВт. Станция ежегодно производит до 2 млн. КВт * ч. электроэнергии.

В Великобритании разрабатывается оригинальная конструкция волновой энергетической установки типа "моллюск", в которой в качестве рабочих органов используются мягкие оболочки - камеры. В камерах находится воздух под давлением, несколько большим атмосферного давления. Накатом волн камеры сжимаются, образуется замкнутый воздушный поток из камер в каркас установки и обратно. На пути потока установлены воздушные турбины Уэллса с электрогенераторами. Сейчас создается опытная плавучая установка с б камер, укрепленных на каркасе длиной 120 м и высотой 8 м. Ожидаемая мощность 500 кВт. Дальнейшие разработки показали, что наибольший эффект дает расположение камер по кругу. В Шотландии на озере Лох-Несс была испытана установка, состоящая из 12 камер и 8 турбин. Теоретическая мощность такой установки до 1200 кВт.

Проект, известный под названием "утка Солтера", представляет собой преобразователь волновой энергии. Рабочей конструкцией является поплавок - "утка", профиль которого рассчитан по законам гидродинамики.

Конструкция этого волнового преобразователя энергии показано на рис. 3.5. В проекте предусматривается монтаж большого количества крупных поплавков, последовательно укрепленных на общем валу. Под действием волн поплавки приходят в движение и возвращаются в исходное положение силой собственного веса. При этом приводятся в действие насосы внутри вала, заполненного специально подготовленной водой. Через систему труб различного диаметра создается разность давления, приводит в движение турбины, установленные между поплавками и поднятые над поверхностью моря. Вырабатываемая электроэнергия передается по подводному кабелю. Для более эффективного распределения нагрузок на валу следует устанавливать 20 - 30 поплавков. В 1978 была испытана модель установки, состоявшая из 20-ти поплавков диаметром 1 м. Выработанная мощность составили 10 кВт. Разработан проект мощной установки из 20 - 30 поплавков диаметром 15 м, укрепленных на валу, длиной 1200 м.

Рис. 4.4. Преобразователь волновой энергии "утка Солтера"

Предполагаемая мощность установки 45 тыс. КВт. Подобные системы, установленные у западных берегов Британских островов, могут обеспечить потребности Великобритании в электроэнергии.

В качестве перспективных энергетических установок можно отметить преобразователь, использующий энергию водяного столба, колеблется. Принцип работы такого преобразователя заключается в следующем. При набегании волны на частично погруженную полость, открытую под водой, столб жидкости в полости колеблется, вызывая изменения давления в газе над жидкостью. Полость связана с атмосферой через турбину. Поток может регулироваться так, чтобы проходить через турбину в одном направлении, или может быть использована турбина Уэллса. Уже известны, по крайней мере, два примера коммерческого использования устройств на этом принципе - сигнальные буи, внедренные в Японии Масудой и в Великобритании сотрудниками Королевского университета Белфаста. Больше и впервые включено в энергосеть устройство построено в Тофтестоллене (Норвегия) фирмой Kvaemor Brug A / S. Основной принцип действия преобразователя, использующего принцип колеблющегося столба показано на рис. 4.4. На этом Рис.: 1 - волновой подъем уровня; 2 - воздушный поток; 3 - турбина; 4 - система впуска и выпуска воздуха; S - направление волны; 6 - опускание волнового уровня; 7 - морское дно.

Рис. 4.5.

В Тофтестоллени он используется в 500-киловаттный установке, построенной на краю отвесной скалы. Кроме того, национальная электрическая лаборатория (NEL) Великобритании предлагает конструкцию, устанавливаемую непосредственно на морском дне. Главное преимущество устройств на принципе водяного колеблющегося столба заключается в том, что скорость воздуха перед турбиной может быть значительно увеличена за счет уменьшения проходного сечения канала. Это позволяет сочетать медленный волновое движение с высокочастотным вращением турбины. Кроме того, здесь создается возможность изъять генерирующий устройство из зоны непосредственного влияния соленой морской воды.

Существуют и другие, менее известные способы преобразования энергии волн в электрическую энергию. Так, волновая электростанция Oceanlinx в акватории города Порт-Кемпбелла (Австралия) использует волны для того, чтобы нагнетать воздух в огромные меха. Сжатый воздух под давлением проходит через турбину, вращая ее лопасти. В результате вырабатывается электроэнергия. Установка Oceanlinx в Порт-Кемпбелла поставляет в электросеть города 450 кВт электроэнергии. У побережья США в Орегоне строится "буйковых" электростанция. Буи под воздействием волн качают магнитный стержень внутри ведущей катушки и генерируют электрический ток.

Електробуйкы, разрабатываемые в Орегонского университете, планируется размещать на расстоянии в два-три километра от побережья. По предварительным расчетам, территория в 25 кв. км сможет поставить электричеством весь штат.

Некоторые типы разработанных и разрабатываемых волновых энергетических установок используют разницу оценок гребня и впадины волны. За счет перелива гребней волны, например, через дамбу, или за счет попеременного открытия клапанов или задвижек происходит заполнение емкостей - бассейнов, перепад, образовавшаяся, уровней в емкости и в море используется водяным колесом или низконапорной гидравлической турбиной для выработки электроэнергии или привода других механизмов. Наиболее известной установкой этого типа является "шлюз Рассела". С целью увеличения действующего перепада уровней (напора) используется эффект набегания волны на пологую поверхность. Для этого рабочая поверхность изготавливается в виде наклонного лотка, сужающийся к верху. Морская волна высотой 1,1 м, собранная по волновому фронту длиной 350 м, при концентрации ее в 12-метровом канале, может привести к возникновению стоячей волны с амплитудой 17 м. Экспериментально установлено, что установка, содержащая наклонную плоскость с углом наклона 30 °, обеспечивает поднятие уровня воды на 2,5 м при средней высоте волны 1,5 м. В США разрабатывается установка этого типа под названием "Дэм Атолл". Основным элементом установки является часть сферы диаметром 100 м и высотой до 30 м, выпуклой частью, выступающей над уровнем моря. На поверхности этого искусственного острова расположены хвиленаправляючи ребра, а в середине - водоприемный отверстие и водовод диаметром до 18 м с гидротурбиной. Горизонтальное давление набегающих волн, может восприниматься и непосредственно различными упругими или подвижными стенками, перемещение которых преобразуется во вращение вала генератора или давление рабочей среды в поршневом насосе. К конструкциям этого типа относится установка "триплейт", предложенная Ф.

Фарлеем. Испытания установки в Великобритании в лабораторных условиях при волнах длиной от 1,5 до 7 м, а также в натурных условиях на крупномасштабной модели при волнах длиной 150 м показали, что расчетный КПД может достигать 80-90% и более.

В настоящее время наиболее распространенными волновыми установками являются поплавковые. Рабочее тело таких установок -поплавець - находится на поверхности моря и совершает вертикальные колебания в соответствии с изменениями уровня воды при ветровом волнении. Вертикальные перемещения поплавка используются для попеременного сжатия газа или жидкости в какой-либо емкости, либо они превратятся во вращательное движение электрического генератора и т.п. Например, буй диаметром 16 м, разработанный в Норвегии, при амплитуде вертикальных перемещений 8 м способен при КПД 80% производить до 4 млн. КВт ч. в год. Амплитуда колебаний поплавка может быть существенно (в 10-12 раз) увеличена за счет совершенствования его конструкции. Для увеличения амплитуды (резонанса) вертикальный цилиндрический поплавок частично (в зависимости от параметров волны и поплавка) заполняется водой или к поплавки подвешивается груз соответствующей массы. Крупномасштабная модель резонансного поплавка, исследована в Японии, имела диаметр 2,2 м, высоту 22 м, массу 13,5 т, пропеллерную турбину диаметром 0,8 м. Амплитуда колебаний поплавка достигала 8 м при волнах высотой от 0,5 до 1, 5 м. На рис. 4.6. показано устройство такой поплавковой станции.

Рис. 4.6.

Где: 1 - поплавок 2 - сжимаемая жидкость 3 - электротурбина с генератором.

Перечисленные выше типы волновых энергетических установок включают элементы, находящиеся на поверхности моря и поэтому подвержены влиянию не только расчетных, но и экстремальных штормовых волн. Для предотвращения такого воздействия можно располагать рабочее тело полностью под уровнем моря. В таких установках "набегающая волна" давления, обусловленная разницей давлений под гребнем и впадиной волны, используется для сжатия эластичных оболочек, уложенных на дно моря в направлении движения волны, или влияния на горизонтальную площадку, укрепленную на опорах на дне моря. Толчки давления в оболочках или над горизонтальной площадкой используются для повышения давления и перемещения рабочей жидкости или газа.

В Великобритании предложена установка "упругая труба", способная воспринимать не только вертикальную, но и горизонтальную составляющую гидростатического давления. Исследования на модели показали высокую скорость реакции "трубы" на изменение волнового давления. В Бристольского университете Великобритании еще в 1976 г.. Была предложена установка под названием "Бристольский цилиндр". Установка представляет собой круговой цилиндр, полностью погружен в поверхностный слой воды параллельно фронту волны. Цилиндр имеет положительную плавучесть и содержится в затопленном состоянии якорной системой, в связях которой устанавливаются погрузочные устройства, например, гидроцилиндры.

В Японии в эти годы сделали и испытали первую в мире крупномасштабную оффшорную плавающую установку "Каишеи" в Японском море. Установка включала 9 генераторов на борту, которые были установлены выше волно-приемных камер, открытые ниже уровня воды. Волнение вызвало периодический сжатие и разрежение воздуха, прогоняли через воздушные турбины с приводом на генераторы. Кроме того, в Японии были сделаны другие по типу большие волновые установки, включая Caisson-type Oscillating Water Column prototype. Эта установка имеет 4 кессона с габаритными размерами каждого кессона 20,9 х2 4,3 х 27,0 метра. Рабочая глубина воды составляла 18 м. Каждый кессон имел 4 открытых с фронтальной части отверстия, обращенных к набегающих волн. Каждое отверстие отвечал отдельном отсеке камеры, которые разделены стинками- перегородками. Поршневая действие осцилуючих водяных колонн вызвал движение воздуха через турбины Уэльса (1,34 м в диаметре, 16 лопастей). Использовали генераторы на 60 кВт каждый. Данный прототип испытывали в Японском море в порту Саката в префектуре Ямагата. Португалия реализует проект 0,5 мегаваттной береговой волновой энергетической установки на острове Рисо (Азорские острова). Размеры бетонной компрессионной камеры составляют 12 × 12 м, а воздуховод для воздушной турбины Уэльса имеет диаметр 2,3 м. В Индии построена опытная установка на 150 кВт также с турбиной Уэльса около острова Тривандрум.

Эдинбургский фирма Aquamarine Power сдала в эксплуатацию Европейском исследовательском центре морской энергии (European Marine Energy Centre), крупнейшая в мире волновую электростанцию "Устрица" (Oyster), созданную при содействии ученых из Королевского университета в Белфасте (Queen"s University Belfast).

Элементы "Устрицы", установленные на дне вряд, похожие на растянутые автонасосы. их вертикальные стенки собраны из пяти больших параллельных труб- поплавков. Волна, идущая к берегу наклоняет эту стенку (вроде бы слегка качает насос ногой) и и, возвращаясь на петлях вокруг горизонтальной оси, приводит в действие поршень, нагнетает воду в трубопровод высокого давления. Поступающая под давлением на берег вода крутит ротор электрогенератора. Расположение между морем и сушей устройства для сбора волновой энергии и електропреобразователи реализован впервые. Выгоды такого варианта размещения действительно очевидны: материалы на суше проработает дольше, и ее обслуживать проще. Oyster уже включен в потребительскую электросеть и начал исправно питать энергией несколько сотен домов на шотландском побережье. На сегодня в морях работают уже десятки сравнительно небольших волновых электростанций. Первая в мире большая коммерческая ВЭС начала генерировать ток в прошлом году в Португалии под городком Агусадора.

В целом создание волновых электростанций определяется оптимальным выбором акватории океана с устойчивым запасом волновой энергии, эффективной конструкцией станции, в которую встроены устройства сглаживания неравномерного режима волнения. Считается, что эффективно волновые станции могут работать при использовании мощности около 80 кВт / м. Опыт эксплуатации существующих установок показал, что вырабатываемая ими электроэнергия пока в 2-3 раза дороже традиционной, но в будущем ожидается значительное снижение ее стоимости. Мощные многомодульные волновые установки могут служить хорошей энергетической базой для создания экологически чистых объектов перерабатывающей промышленности морского и прибрежного базирования.

Волновая электростанция – это один из подвидов электростанций, использующих для выработки электроэнергии кинетическую энергию воды. В данном случае используется энергия волн морей и океанов.

Это относительно новый вид энергетики, хотя ее история насчитывает уже более 200 лет. Чаще всего волновые электростанции устанавливаются недалеко от прибрежных зон там, где потенциальная волновая активность выше всего. К таким местам относятся: западно-европейское побережье, северное побережье Англии, Тихоокеанское побережье Америки (обоих континентов), прибрежная зона Южной Африки, Австралии и Новой Зеландии.

История

Первая так называемая «волновая мельница» была запатентована Парижским патентным бюро аж в 1799 году. С этого момента инженерами и учеными производились многочисленные попытки использования кинетической энергии волн для выработки электричества . Вплоть до начала 20-го века было множество подобных изобретений, правда не одно из них так и не использовалось в промышленных масштабах.

Лишь в 1973 году после катастрофической нехватки нефтяных запасов (нефтяной кризис) интерес исследователей и ученых к альтернативной энергетике заметно возрос. Начались активно разрабатываться и создаваться, в том числе и волновые электростанции.

Первая промышленная волновая электростанция, разработка которой началась в 2005 году, была введена в эксплуатацию 23 сентября 2008 года в 5-ти километровой прибрежной зоне Португалии (район Агусадора). Ее эксплуатационная электрическая мощность составила 2,25 МВт. Сейчас она обеспечивает светом более 1,5 тыс. частных домов.

Принцип работы

Современная волновая электростанция состоит из нескольких специальных конвертеров, мощность каждого из которых может достигать 1 МВт. Каждый конвертер состоит из нескольких секций, между которыми закреплены на движимых конструкциях гидравлические поршни. К каждому поршню или системе поршней привязан гидравлический двигатель, который приводит во вращение электрический генератор .

Под действием волн конвертер начинает качаться, что приводит в движение гидравлические поршни. Последние создают в гидравлической системе, в которой находится масло, давление, а оно в свою очередь движет гидравлическими двигателями.

Один конвертер может достигать в длину до 150 метров и иметь диаметр около 3 метров. Вес одной такой установки не редко достигает 700 – 800 тонн.

Есть и другие конструкции конвертеров, которые представляют собой отдельные буи, расположенные не горизонтально, а вертикально. Принцип их работы аналогичен предыдущему с той лишь разницей, что гидравлические поршни имеют несколько иную форму.

Сложность конструкций всех существующих конвертеров заключается лишь в эксплуатационных особенностях механических их частей. Ведь волновые электростанции, как правило, находятся в соленой воде, поэтому очень важно не допустить ее контакта с металлическими элементами конвертера.

Также очень часто приходится использовать специальные приспособления (волнорезы и тормозные щиты), чтобы снизить чрезмерную энергию волны, которая с легкостью может разрушить всю конструкцию.

Удельная мощность всех волн морей и океанов намного превосходит как ветровую, так и солнечную суммарную энергию. Ученые подсчитали, что средняя эквивалентная мощность волны на нашей планете равняется примерно 15 кВт на погонный метр. И это при средней высоте волн до 1 метра. Если же волны, а это бывает не так уж и редко, достигают высоты 2 и более метров, их эквивалентная мощность может доходить до 80 кВт/м пог.

В нашей стране интерес к волновым преобразователям возник в 20-30гг. XX века. В 1935г. наш великий соотечественник К.Э. Циолковский опубликовал статью «Волнолом и извлечение энергии из морских волн», в которой описал принципиальные схемы трех типов устройств и в настоящее время относящихся к разряду наиболее перспективных. В них без труда узнаем (рис. 2.1) аналоги будущих устройств разработанных Масудой, Кайзером, Коккереллом. Российский ученый К.Э. Циолковский считал, что первые две системы не оригинальны, но относительно новизны последней - контурного плота - не сомневался.

Рис. 2.1.

описанные К.Э. Циолковским: а,б - пневматические; в - контурный плот.

В 70-х годах прошлого века на Черном море испытывалась модель волнового плота. Она имела длину 12 м, ширину поплавков 0,4 м. На волнах высотой 0,5 м и длиной 10 - 15 м установка развивала мощность 150 кВт. (рис.2.2)

Рис. 2.2. Вариант выполнения контурного плота Коккерелла: 1 - колеблющаяся секция; 2 - преобразователь; 3 - тяга; 4 - шарнир.

Детальные лабораторные испытания модели плота в масштабе 1/100 показали, что его эффективность составляет около 45 %. Это ниже, чем у «утки» Солтера, но плот привлекает другим достоинством: близость конструкции к традиционным судостроительным.

В современной России существует множество разработок волновых электростанций, все они реализованы в той или иной степени. Одним из таких проектов является совместная разработка компании ОАО «OceanRusEnergy» и Уральский федеральный университет (УрФУ г. Екатеринбург).

Рис. 2.3.

При создании волнового движения в верхней и нижней точках прохождения волны, маятник совершает возвратно-поступательные движения, аккумулируя потенциальную энергию в пружине. При вращении вала генератора вырабатывается переменный ток. Для создания постоянного тока предусмотрены небольшие выпрямители (например, по схеме Ларионова), что позволяет осуществлять зарядку АКБ (аккумуляторная батарея).

Схема воздействия волны на поплавковый микромодуль волновой микро ЭС (ВГЭС) представлена на рис. 2.4.

волновой электростанция поплавковый микромодуль

Рис. 2.4

При испытаниях модуля ВГЭС имитировалась волновая качка Баренцева моря с периодом колебания волны от 1 до 3,5 секунд, среднегодовой скоростью ветра 7-9 м/с, расчетной гарантированной амплитудой колебаний (высота волны) 20 см и 30 см. Для имитации волн был использован кривошипно-шатунный механизм (КШМ) с продольным движением конечного звена - тяги. КШМ преобразовывал вращение вала двигателя в возвратно-поступательное движение тяги. В качестве привода был выбран асинхронный двигатель мощностью Р=1 кВт и частотой вращения n0 не менее 3000 об/мин. Редуктор был подобран из расчета передаточного отношения Z=25.

Использование в исследовании режимов имитации волн с амплитудой А=20, А=30, и периодом колебаний Т=2, 3, 3.5 с позволило получить необходимые электротехнические значения и характеристики для оценки генерируемой мощности и определить оптимальные и эффективные режимы работы исследуемой поплавковой ВГЭС.

Испытания на стенде проводились в лаборатории волновой энергетики Евроазиатского центра ВИЭ УрФУ. Испытуемый образец ВГЭС представлен на рис. 2.5.

Рис. 2.5.

Пример электротехнических параметров генерирующего модуля при постоянном токе(DC) представлен на графике.

График показателя мощности ВГЭС при амплитуде колебаний 0,2м и периоде 1 с.

Результаты экспериментов с имитацией волн разной амплитуды и периода колебаний волн Т показали, что генерируемая мощность одного модуля ВГЭС составляет 15-60 Вт. Увеличение мощности до уровня, нескольких кВт, решается за счет использования нескольких микромодулей ВГЭС, объединенных в единый кластер (рис.2.6)

Рис. 2.6.

Дальнейшее наращивание мощности ВГЭС до нескольких десятков и сотен кВт может быть реализовано путем сборки большего числа микромодулей в кластеры ВИЭ на базе волновых микромодулей (рис. 2.7).

Рис. 2.7.

Заключение

В случае непосредственного использования электроэнергии, вырабатываемой волновой станцией, для хозяйственных нужд ее нельзя рассматривать как самостоятельный источник. Непостоянство во времени и пространстве, сезонный характер самого ресурса требуют иметь в резерве какой-то дополнительный источник электроэнергии, либо подключать волновую электростанцию к энергосети, позволяющей за счет сторонних источников компенсировать снижение мощности из-за уменьшения волнения, либо, наконец, использовать аккумулирование энергии.

Еще одна трудность при создании волновых преобразователей - обеспечение их живучести в случае экстремальных волновых нагрузок, значительно превышающих расчетные режимы эксплуатации. Среднее значение мощности, для Северной Атлантики составляет примерно 50 кВт/м. Во время сильного шторма эта величина может достичь значения 2 МВт/м при высоте волн 15 м. Наблюдавшиеся в этом же районе максимальные волны (так называемые «пятидесятилетние волны») имели высоту до 34 м. Для этого района считается целесообразным разрабатывать устройства, рассчитанные на нормальную работу в диапазоне мощностей 50--150 кВт/м. Таким образом, чтобы противостоять штормам средней силы преобразователи энергии волн должны иметь установленную мощность, значительно превышающую среднюю. Это не спасает их от сильных штормов. Здесь предложено несколько вариантов защиты. Например, в случае такого шторма преобразователь может быть затоплен. Другой вариант -- так рассчитывать преобразователи, чтобы с увеличением волнения выше оптимального их эффективность падала. Однако, в любом случае возникают серьезные трудности при обслуживании, передаче энергии, удержании на якоре. Возникают даже совершенно новые проблемы. Например, срыв с якоря одного из точечных преобразователей может привести к разрушению соседних с ним устройств. Выбрасывание же на берег аварийных устройств может привести к опасности разрушения береговых сооружений.

Трудности создания энергетики на преобразовании энергии волн достаточно велики. Их преодоление потребует еще многих усилий разработчиков и ученых. В настоящее время в мире уже эксплуатируется около 400 автономных навигационных буев, использующих энергию воды. Однако уже в этом столетии прогнозируется возможное получение от океанских волн мощности не менее 10 ГВт (мощность Красноярской ГЭС около 12 ГВт).

Преимущества волновой энергии состоят в том, что она достаточно сильно сконцентрирована, доступна для преобразования и на любой момент времени может прогнозироваться в зависимости от погодных условий. Создаваясь под действием ветра, волны хорошо сохраняют свой энергетический потенциал, распространяясь на значительные расстояния. Например, крупные волны, достигающие побережья Европы, зарождаются во время штормов в центре Атлантики и даже в Карибском море.

Волновая электростанция - это электрическая станция, которая располагается в водной природной среде с целью получения электроэнергии из кинетической энергии водных масс. Океаны обладают колоссальной энергией, но человек пока только начинает ее осваивать. Именно эту задачу и выполняют волновые электростанции.

Принцип работы

Принцип работы волновой электростанции основан на преобразовании кинетической энергии волн в электрическую. Существует несколько способов устройства подобных станций различных по принципу работы и конструкции.

Волновые электростанции в России

В России, как и во всех странах, имеющих выход к морскому побережью, после многих лет затишья, возвращается интерес к источникам энергии, способным восстанавливаться, к ним относятся и волновые электростанции.

Первая в нашей стране электростанция , основанная на преобразовании энергии волн, построена в
2014 году на Дальнем Востоке в Приморском крае на полуострове Гамова. Это универсальная станция, она способна преобразовывать не только энергию направленных водных масс, но и энергию природных приливов и отливов.

Профильные министерства нашей страны, совместно с руководством государства разработали план развития зеленой энергетики до 2020 года, в соответствии с которым альтернативные энергетические источники будут составлять до 5% от общего количества вырабатываемого электричества в стране. Этим планом предусмотрено и дальнейшее развитие волновых электрических станций.

Волновые электростанции в мире

Первая в мире электростанция на волнах появилась в 1985 году в Норвегии, ее мощность составляла 500 кВт.

Первой в мире промышленной электрической станцией, использующей энергию волн для производства
электрической энергии, принято считать Oceanlinx в Австралии. Она начала своё функционирование в 2005 году, потом была произведена ее реконструкция, и в 2009 году станция заработала вновь. Работа станции основана на принципе «осциллирующего водяного столба». Мощность установки сейчас составляет 450 кВт.

Первая коммерческая волновая электростанция начала работу в 2008 году в Агусадоре, Португалия. Это установка-пионер, которая использует непосредственно механическую энергию волны. Работа станции основана на принципе «колеблющегося тела». Разработала проект английская компания Pelamis Wave Power, мощность станции составила 2,3 МВт, и есть возможность увеличения мощности путем монтирования дополнительных секций.

В Великобритании построили самую большую в мире волновую электростанцию Wave Hub, она расположена у полуострова Корнуэлла. Электростанция оборудована 4-мя генераторами мощностью по 150 кВт каждый. Работа станции основана на принципе «колеблющегося тела».

Почему это выгодно?

В существующем мире человек все чаще задумывается о необходимости применения возобновляемых источников энергии при получении электроэнергии. Одним из таких вариантов является энергия морских волн. С учетом того, что мировой океан обладает огромным потенциалом, энергией которого можно обеспечить почти 20% от необходимого количества энергопотребления, то и развитие «зеленой» энергетики как нельзя актуально в наше время.

Это можно объяснить следующим причинами:

  1. Природные богатства планеты находятся на грани истощения, запасы традиционных источников энергии: угля, нефти и газа – подходят к концу.
  2. Атомная энергетика из-за своей потенциальной опасности не получила должного распространения.
  3. «Зеленая» энергетика не вредит окружающей среде и является возобновляемой.
  4. Потенциал волновых электростанций оценивается в 2,0 млн. МВт, что сравнимо по мощности с тысячей работающих атомных станций.

Ученые всего мира продолжают работы по совершенствованию способов преобразования энергии волн океана, и перечисленные выше причины являются важным аргументом для продолжения этих изысканий.

Плюсы и минусы использования

У любого агрегата всегда есть положительные и отрицательные аспекты его использования, и именно соотношение этих параметров определяет целесообразность его применения. Волновые электростанции не являются исключением, рассмотрим все за и против использования этого источника энергии.

К плюсам использования можно отнести:


К минусам данного типа электростанций относятся:

  • Малая мощность вырабатываемой энергии;
  • Не стабильный характер работы, вызванный атмосферными явлениями в окружающей среде;
  • Может создавать опасность для хода судов и промышленного лова рыбы.

Приведенные выше «минусы» использования постепенно утрачивают свою актуальность, ученые и конструкторы продолжают свою работу. Разработка новых, более мощных генераторов, позволяет получать большее количество электрической энергии, при тех же исходных параметрах первичной энергии, которой является энергия волн. Решаются задачи по передаче полученной энергии на большие расстояния.

© 2024 skudelnica.ru -- Любовь, измена, психология, развод, чувства, ссоры