Что такое прямые измерения. Измерения

Главная / Развод

При косвенных измерениях значение искомой величины находят по результатам прямых измерений других величин, с которыми измеряемая величина связана функциональной зависимостью. Пример косвенных измерений - измерение удельного сопротивления проводника по результатам измерения его сопротивления, площади поперечного сечения и длины.

В общем случае при косвенных измерениях имеет место нелинейная зависимость между измеряемой величиной и её аргументами

Если каждый из аргументов характеризуется своей оценкой и погрешностью

то (3.19) запишется в следующем виде:

Выражение (3.20) можно разложить в ряд Тейлора по степеням:

где - остаточный член ряда.

Из этого выражения можно записать абсолютную погрешность измерения X

Если принять R0 =0, что справедливо при малых погрешностях аргументов (xi0), то получаем линейное выражение для погрешности измерения. Такая операция называется линеаризацией нелинейного уравнения (3.19). В получаемом в этом случае выражении для погрешности - коэффициенты влияния, а Wixi - частные погрешности.

Пренебречь остаточным членом при оценке погрешности допустимо не всегда, т.к. в этом случае оценка погрешности оказывается смещенной. Поэтому, когда связь между X и xi в выражении (3.19) нелинейная, проверяют допустимость линеаризации по следующему критерию

где в качестве остаточного члена берут член ряда второго порядка

Если известны границы погрешностей аргументов (случай наиболее часто встречающийся при однократных измерениях), то легко определить максимальную погрешность измерения X:

Эту оценку обычно принимают при однократных измерениях и числе аргументов меньше 5.

При нормальном распределении всех аргументов и одинаковых доверительных вероятностях, выражение (3.25) упрощается

Обычно, особенно при однократных измерениях, законы распределения аргументов неизвестны, а вид суммарного распределения определить практически невозможно, учитывая трансформацию законов распределения при нелинейной связи измеряемой величины X и её аргументов. В этом случае в соответствии с методом ситуационного моделирования принимают закон распределения аргументов равновероятным. При этом доверительная граница погрешности результата косвенного измерения определится по формуле

где зависит от выбранной вероятности, числа слагаемых и соотношения между ними. Для равных по величине слагаемых и для=0,95 -=1,1; для =0,99 - =1,4.

Погрешности результатов измерения аргументов могут быть заданы не границами, а параметрами систематических и случайных составляющих погрешностей - границами и СКО. В этом случае оценивают отдельно систематическую и случайную составляющие погрешности косвенного измерения, а затем объединяют полученные оценки.

Что касается суммирования систематических погрешностей (или их неисключенных остатков), то оно осуществляется в зависимости от наличия сведений о распределении погрешностей с использованием выражений (3.24) - (3.27), в которых вместо погрешностей измерений аргументов следует подставить соответствующие границы для систематических погрешностей.

Случайные погрешности результатов косвенных измерений суммируются следующим образом.

Погрешность результата косвенного наблюдения, имеющего случайные погрешности аргументов j будет равна

Определим дисперсию этой погрешности

т.к. последнее слагаемое равно нулю, то

В этом выражении - ковариационная функция (корреляционный момент), равный нулю, если погрешности аргументов независимы друг от друга.

Вместо ковариационной функции часто пользуются коэффициентом корреляции

В этом случае дисперсия результата наблюдения будет иметь вид

Для получения дисперсии результата измерения необходимо разделить это выражение на число измерений n.

В этих выражениях rij - коэффициенты попарной корреляции между погрешностями измерений. Если rij = 0, то второе слагаемое в правой части (3.30) равно нулю и общее выражение для погрешности упрощается. Значение rij либо известно априорно (в случае однократных измерений), либо (для многократных измерений) его оценка определяется для каждой пары аргументов xi и xj по формуле

Наличие корреляционной связи между погрешностями аргументов имеет место в том случае, когда аргументы измеряются одновременно, однотипными приборами, находящимися в одинаковых условиях. Причиной возникновения корреляционной связи является изменение условий измерения (пульсации напряжения питающей сети, переменные наводки, вибрации и т.д.). О наличии корреляции удобно судить по графику, на котором изображены пары последовательно получаемых результатов измерений величин xi и xj .

При малом числе наблюдений может оказаться, что rij 0 даже при отсутствии корреляционной связи между аргументами. В этом случае необходимо пользоваться числовым критерием отсутствия корреляционной связи, который состоит в выполнении неравенства

где - коэффициент Стьюдента для заданной вероятности и числа измерений (табл. А5).

Границы случайной погрешности после определения оценки дисперсии результатов измерения определяются по формуле

где при неизвестном результирующем распределении берется из неравенства Чебышева

Неравенство Чебышева дает завышенную оценку погрешности результата измерений. Поэтому, когда число аргументов больше 4, распределение их одномодальны и среди погрешностей нет резко выделяющихся, число измерений, выполненных при измерении всех аргументов превышает 25-30, то определяется из нормированного нормального распределения для доверительной вероятности.

Трудности возникают при меньшем числе наблюдений. В принципе можно было бы воспользоваться распределением Стьюдента, но неизвестно как в этом случае определить число степеней свободы. Точного решения эта задача не имеет. Приближенную оценку числа степеней свободы, называемую эффективной, можно найти по формуле, предложенной Б. Уэлчем

Имея и заданную вероятность можно найти по распределению Стьюдента и, следовательно, .

Если при разложении в ряд Тейлора необходимо учитывать члены второго порядка, то дисперсию результата наблюдения следует определять по формуле

Границы суммарной погрешности измерений оценивают аналогично тому, как это было сделано для случая прямых измерений.

В общем случае, при многократных косвенных измерениях статистическая обработка результатов сводится к выполнению следующих операций:

  • 1) из результата наблюдений каждого аргумента исключаются известные систематические погрешности;
  • 2) проверяют, соответствует ли распределение групп результатов каждого аргумента заданному закону распределения;
  • 3) проверяют наличие резко выделяющихся погрешностей (промахов) и исключают их;
  • 4) вычисляют оценки аргументов и параметры их точности;
  • 5) проверяют отсутствие корреляции между результатами наблюдений аргументов попарно;
  • 6) вычисляют результат измерений и оценки параметров его точности;
  • 7) находят доверительные границы случайной погрешности, неисключенную систематическую погрешность и общую погрешность результата измерения.

Частные случаи вычисления погрешностей при косвенных измерениях

Наиболее простыми, но распространенными случаями зависимости между аргументами при косвенных измерениях являются случаи линейной зависимости, степенных одночленов и дифференциальной функции.

В случае линейной зависимости

не требуется проведения линеаризации выражения для погрешности, которое, очевидно будет иметь вид

То есть, вместо коэффициентов влияния можно использовать коэффициенты из выражения (3.34). Дальнейшее определение погрешности измерения будет производиться аналогично косвенным измерениям с линеаризацией.

Из этого выражения можно определить коэффициенты влияния

Подставляя (3.36) в (3.35) и деля обе части на, получаем искомую относительную погрешность

где - относительные погрешности измерения аргументов.

Таким образом, в случае уравнения измерения в виде степенных одночленов и представлении погрешностей в относительной форме, в качестве коэффициентов влияния берутся степени соответствующих одночленов.

Практический прием нахождения коэффициентов влияния при выражении погрешностей в форме относительных погрешностей состоит в том, что уравнение измерения сначала логарифмируют, а потом дифференцируют. В рассматриваемом случае

То есть полученное выражение аналогично (3.37).

В метрологии часто встречается дифференциальная функция вида

Дисперсия результата измерения в этом случае будет равна

Малое значение дисперсии может быть только в случае, когда в этом случае

Во всех остальных случаях отлично от нуля. При отсутствии корреляции

Максимальное значение дисперсии результата измерения будет в том случае, когда в этом случае

Таким образом, при измерении малых разностей дисперсия результата измерения может быть соизмерима с самим результатом измерения.

Критерий ничтожных погрешностей

Не все частные погрешности косвенных измерений играют одинаковую роль в формировании итоговой погрешности результата.

Поэтому интересно оценить, при каких условиях их присутствие не оказывает влияния на результат измерения.

При вероятностном суммировании результирующая погрешность будет равна

При отбрасывании k-й погрешности

откуда следует

и, следовательно,

Отличие между и можно считать незначительным, если оно не будет превышать погрешности округления при выражении значения погрешности результата измерения. Так как последняя не должна выражается более чем двумя значащими цифрами, а максимальная погрешность округления не будет превышать половины старшего отбрасываемого разряда, то отличие между и будет незначительным, если

С учетом предыдущего выражения

Таким образом, частной погрешностью можно пренебречь в том случае, когда она в три раза меньше, чем суммарная погрешность косвенного измерения.

Совместные измерения

Совместными называются проводимые одновременно измерения двух или нескольких неодноименных величин для нахождения зависимости между ними

Наиболее часто на практике определяют зависимость Y от одного аргумента x

При этом совместно измеряют n значений аргумента xi, i = 1, 2,... , n и соответствующие значения величины Yi и по полученным данным определяют функциональную зависимость (3.39). Этот случай мы и будем рассматривать в дальнейшем. Применяемые при этом методы прямо переносятся на зависимость от нескольких аргументов.

В метрологии совместные измерения двух аргументов применяются при градуировке СИТ, в результате которой определятся градуировочная зависимость, приводимая в паспорте СИТ в виде таблицы, графика или аналитического выражения. Предпочтительнее всего задавать ее в аналитическом виде, поскольку такая форма представления наиболее компактна и удобна для решения широкого круга практических задач.

Примером совместных измерений может служить задача определения температурной зависимости сопротивления терморезистора

R(t) = R20 + (t-20) + (t -20)2,

где R20 - сопротивление терморезистора при 20 оС;

Температурные коэффициенты сопротивления.

Для определения R20 , или производится измерение R(t) в n температурных точках (n>3) и по этим результатам определяется искомая зависимость.

При определении зависимости в аналитическом виде следует придерживаться следующего порядка действий.

  • 1. Построить график искомой зависимости Y=f(x).
  • 2. Задать предполагаемый функциональный вид зависимости

Y=f(x, A0, A1, … Am), (3.40)

где Aj - неизвестные параметры зависимости.

Вид зависимости может быть известен либо из физических закономерностей, описывающих явление, положенное в основу работы СИТ, либо на основе предыдущего опыта и предварительного анализа данных (анализ графика искомой зависимости).

  • 3. Выбрать метод определения параметров этой зависимости. При этом необходимо учитывать выбранный вид зависимости и априорные сведения о погрешности измерения xi и Yi.
  • 4. Вычислить оценки параметров A j зависимости выбранного вида.
  • 5. Оценить степень отклонения экспериментальной зависимости от аналитической, для проверки правильности выбора вида зависимости.
  • 6. Определить погрешности нахождения, используя известные характеристики случайных и систематических погрешностей измерения x и Y.

В современной математике разработаны многочисленные методы решения таких задач. Наиболее распространенными из них является метод наименьших квадратов (МНК). Этот метод разработал Карл Фридрих Гаусс еще в 1794 г. для оценки параметров орбит небесных тел и до сих пор он с успехом используется при обработке экспериментальных данных.

В МНК оценки параметров искомой зависимости определяют из условия, что сумма квадратов отклонений экспериментальных значений Y от расчетных значений минимальна, т.е.

где - невязки.

При рассмотрении МНК ограничимся случаем, когда искомая функция - полином, т.е.

Задача заключается в том, чтобы определить такие значения коэффициентов, при которых выполнялось бы условие (3.41).

Для этого запишем выражение для невязок в каждой экспериментальной точке

Число точек n выбирают значительно больше, чем m+1.

Это, как будет показано ниже, необходимо для уменьшения погрешности определения.

Согласно принципу наименьших квадратов (3.41), наилучшими значениями коэффициентов будут те, для которых сумма квадратов невязок

будет минимальна. Минимум функции многих переменных, как известно, достигается тогда, когда все ее частные производные равняются нулю. Поэтому дифференцируя (3.44), получаем

Следовательно, вместо исходной условной системы (3.42), которая вообще говоря есть система несовместная, так как имеет n уравнений с m+1 неизвестными (n > m+1), мы получим систему линейных относительно уравнений (3.45). В ней число уравнений при любом n точно равно числу неизвестных m+1. Система (3.45) называется нормальной системой.

Таким образом, поставленная задача заключается в приведении условной системы к нормальной.

Воспользовавшись обозначениями, введенными Гауссом

и после сокращения всех уравнений на 2 и перегруппировки членов, получим

Анализируя выражение (3.42) и (3.46) видим, что для получения первого уравнения нормальной системы достаточно просуммировать все уравнения системы (3.42). Для получения второго уравнения нормальной системы (3.42), суммируются все уравнения, предварительно умноженные на xi. То есть, для получения k-го уравнения нормальной системы необходимо умножить уравнения системы (3.42) на и просуммировать полученные выражения.

Наиболее кратко решение системы (3.45) описывается с помощью определителей

где главный определитель D равен

а определители DJ получаются из главного определителя D путем замены столбца с коэффициентами при неизвестном АJ на столбец со свободными членами

Оценка СКО величин, найденных как результат совместных измерений, выражается следующей формулой

Прямыми измерениями называют такие измерения, которые получены непосредственно с помощью измерительного прибора. К прямым измерениям можно отнести измерение длины линейкой, штангенциркулем, измерение напряжения вольтметром, измерение температуры термометром и т.п. На результатах прямых измерений могут оказать влияние различные факторы. Поэтому погрешность измерений имеет различный вид, т.е. имеет место погрешность прибора, систематические и случайные погрешности, ошибки округления при снятии отсчета со шкалы прибора, промахи. В связи с этим важно выявить в каждом конкретном эксперименте, какая из ошибок измерения является наибольшей, и если окажется, что одна из них на порядок превышает все остальные, то последними погрешностями можно пренебречь.

Если же все учитываемые погрешности по порядку величины одинаковы, то необходимо оценить совместный эффект нескольких различных погрешностей. В общем случае суммарная ошибка подсчитывается по формуле:

где  – случайная погрешность,  – погрешность прибора, – погрешность округления.

В большинстве экспериментальных исследований физическая величина измеряется не прямо, а через другие величины, которые в свою очередь определяются прямыми измерениями. В этих случаях измеряемая физическая величина определяется через прямо измеренные величины посредством формул. Такие измерения называются косвенными. На языке математики это означает, что искомая физическая величина f связана с другими величинами х 1, х 2, х 3, ,. х n функциональной зависимостью, т.е

F = f (x 1 , x 2 ,….,х n )

Примером таких зависимостей может служить объем шара

.

В данном случае косвенно измеряемой величиной является V - шара, которая определится при прямом измерении радиуса шара R. Данная измеряемая величина V является функцией одной переменной.

Другим примером может быть плотность твердого тела

. (8)

Здесь – является косвенно измеряемая величина, которая определяется прямым измерением массы тела m и косвенной величиной V . Данная измеряемая величина является функцией двух переменных, т.е.

= (m, V)

Теория погрешностей показывает, что погрешность функции оценивается суммой погрешностей всех аргументов. Погрешность функции будет тем меньше, чем меньше погрешностей её аргументов.

4.Построение графиков по экспериментальным измерениям.

Существенным моментом экспериментального исследования является построение графиков. При построении графиков, прежде всего необходимо выбрать систему координат. Наиболее распространенной является прямоугольная система координат с координатной сеткой, образованной равностоящими друг от друга параллельными прямыми (например, миллиметровая бумага). На осях координат через определенные промежутки наносятся деления в определенном масштабе для функции и аргумента.

В лабораторных работах при изучении физических явлений приходится учитывать изменения одних величин в зависимости от изменения других. Например: при рассмотрении движения тела устанавливается функциональная зависимость пройденного пути от времени; при изучении электросопротивления проводника от температуры. Можно привести еще множество примеров.

Переменную величину У называют функцией другой переменной величины Х (аргумент), если каждому значение У будет соответствовать вполне определенное значение величины Х , то можно записать зависимость функции в виде У = У(Х) .

Из определения функции следует, что для её задания необходимо указать два множества чисел (значений аргумента Х и функции У ), а так же закон взаимозависимости и соответствия между ними (Х и У ). Экспериментально функция может быть задана четырьмя способами:

    Таблицей; 2. Аналитически, в виде формулы; 3. Графически; 4. Словесно.

Например: 1. Табличный способ задания функции –зависимости величины постоянного тока I от величины напряжения U , т.е. I = f (U ) .

Таблица 2

2.Аналитический способ задания функции устанавливается формулой, при помощи которой по заданным (известным) значениям аргумента можно определить соответствующие значения функции. Например, функциональная зависимость, приведенная в таблице 2, может быть записана формулой:

(9)

3.Графический способ задания функции.

Графиком функции I = f (U ) в декартовой системе координат называется геометрическое место точек, построенное по числовым значениям координатной точки аргумента и функции.

На рис. 1 построен график зависимости I = f (U ) , заданный таблицей.

Точки, найденные на опыте и наносимые на график, отмечаются отчетливо в виде кружочков, крестиков. На графике для каждой построенной точки необходимо указывать погрешности в виде «молоточков» (см. рис 1). Размеры этих «молоточков» должны быть равны удвоенному значению абсолютных ошибок функции и аргумента.

Масштабы графиков надо выбирать так, чтобы наименьшее расстояние, отсчитываемое по графику, было бы не меньше наибольшей абсолютной погрешности измерений. Однако такой выбор масштаба не всегда удобен. В некоторых случаях удобней взять по одной из осей несколько больший или меньший масштаб.

Если исследуемый интервал значений аргумента или функции отстоит от начала координат на величину, сравнимую с величиной самого интервала, то целесообразно перенести начало координат в точку, близкую к началу исследуемого интервала, как по оси абсцисс, так и по оси ординат.

Проведение кривой (т.е. соединение экспериментальных точек) через точки обычно осуществляется в соответствии с идеями метода наименьших квадратов. В теории вероятностей показано, что наилучшим приближением к экспериментальным точкам будет такая кривая (или прямая), для которой сумма наименьших квадратов отклонений по вертикали от точки до кривой будет минимальной.

Нанесенные на координатную бумагу точки соединяют плавной кривой, причем кривая должна проходить возможно ближе ко всем экспериментальным точкам. Проводить кривую следует так, чтобы она лежала возможно ближе к точкам не превышаемые погрешности и чтобы по обе стороны кривой оказывалось приблизительно равное их количество (см. рис. 2).

Если при построении кривой одна или несколько точек выходят за пределы области допустимых значений (см. рис. 2, точки А и В ), то кривую проводят по остальным точкам, а выпавшие точки А и В как промахи не берут в учет. Затем проводят повторные измерения в этой области (точки А и В ) и устанавливается причина такого отклонения (либо это промах или законное нарушение найденной зависимости).

Если исследуемая, экспериментально построенная функция обнаруживает «особые» точки, (например, точки экстремума, перегиба, разрыва и т.д.). То увеличивается число экспериментов при малых значениях шага (аргумента) в области особых точек.

Измерения различают по способу получения информации, по характеру изменений измеряемой величины в процессе измерений, по количеству измерительной информации, по отношению к основным единицам.

По способу получения информации измерения разделяют на прямые, косвенные, совокупные и совместные.

Прямые измерения – это непосредственное сравнение физической величины с ее мерой. Например, при определении длины предмета линейкой происходит сравнение искомой величины (количественного выражения значения длины) с мерой, т. е. линейкой.

Косвенные измерения – отличаются от прямых тем, что искомое значение величины устанавливают по результатам прямых измерений таких величин, которые связаны с искомой определенной зависимостью. Так, если измерить силу тока амперметром, а напряжение вольтметром, то по известной функциональной взаимосвязи всех трех величин можно рассчитать мощность электрической цепи.

Совокупные измерения – сопряжены с решением системы уравнений, составляемых по результатам одновременных измерений нескольких однородных величин. Решение системы уравнений дает возможность вычислить искомую величину.

Совместные измерения – это измерения двух или более неоднородных физических величин для определения зависимости между ними.

Совокупные и совместные измерения часто применяют в измерениях различных параметров и характеристик в области электротехники.

По характеру изменения измеряемой величины в процессе измерений бывают статистические, динамические и статические измерения.

Статистические измерения связаны с определением характеристик случайных процессов, звуковых сигналов, уровня шумов и т. д. Статические измерения имеют место тогда, когда измеряемая величина практически постоянна.

Динамические измерения связаны с такими величинами, которые в процессе измерений претерпевают те или иные изменения. Статические и динамические измерения в идеальном виде на практике редки.

По количеству измерительной информации различают однократные и многократные измерения.

Однократные измерения – это одно измерение одной величины, т. е. число измерений равно числу измеряемых величин. Практическое применение такого вида измерений всегда сопряжено с большими погрешностями, поэтому следует проводить не менее трех однократных измерений и находить конечный результат как среднее арифметическое значение.

Многократные измерения характеризуются превышением числа измерений количества измеряемых величин. Преимущество многократных измерений – в значительном снижении влияний случайных факторов на погрешность измерения.

По используемому методу измерения – совокупности приемов использования принципов и средств измерений различают:

– метод непосредственной оценки;

– метод сравнения с мерой;

– метод противопоставления;

– метод дифференциальный;

– метод нулевой;

– метод замещения;

– метод совпадений.

По условиям, определяющим точность результата, измерения делятся на три класса: измерения максимально возможной точности, достижимой при существующем уровнетехники; контрольно-поверочные измерения, погрешность которых не должна превышать некоторое заданное значение; технические (рабочие) измерения, в которых погрешность результата измерения определяется характеристиками средств измерений.

Процессы весьма разнообразны. Это объясняется множеством экспериментальных величин, различным характером измерения величин, различными требованиями точности измерения и другие.

Наиболее распространена классификация видов измерений в зависимости от способа обработки экспериментальных данных. В соответствии с этой классификацией измерения делятся на прямые, косвенные, совместные и совокупные.

Прямое измерение

Прямое измерение - это измерение, при котором искомое значение физической величины находится непосредственно из опытных данных в результате сравнения измеряемой величины с эталонами.

  • измерение длины линейкой .
  • измерение электрического напряжения вольтметром .

Косвенное измерение

Косвенное измерение - измерение, при котором искомое значение величины находится на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям.

  • сопротивление резистора находим на основании закона Ома подстановкой значений силы тока и напряжения, получаемых в результате прямых измерений.

Совместное измерение

Совместное измерение - одновременное измерение нескольких неодноименных величин, для нахождения зависимости между ними. При этом решается система уравнений.

  • определение зависимости сопротивления от температуры . При этом измеряются неодноименные величины, по результатам измерений определяется зависимость.

Совокупное измерение

Совокупное измерение - одновременное измерение нескольких одноименных величин, при котором искомые значения величин находятся решением системы уравнений, состоящих из результирующих прямых измерений различных сочетаний этих величин.

  • измерение сопротивления резисторов, соединённых треугольником. При этом измеряется значение сопротивления между вершинами. По результатам определяются сопротивления резисторов.

Wikimedia Foundation . 2010 .

Смотреть что такое "Прямое измерение" в других словарях:

    прямое измерение - Измерение, при котором искомое значение физической величины получают непосредственно. Примечание. Термин прямое измерение возник как противоположный термину косвенное измерение. Строго говоря, измерение всегда прямое и рассматривается как… … Справочник технического переводчика

    прямое измерение - 3.5 прямое измерение (direct measurement): Измерение, посредством которого отдельные компоненты и/или группы компонентов определяются путем сравнения с идентичными компонентами в ГСО. Источник … Словарь-справочник терминов нормативно-технической документации

    Прямое измерение - 19) прямое измерение измерение, при котором искомое значение величины получают непосредственно от средства измерений;... Источник: Федеральный закон от 26.06.2008 N 102 ФЗ (ред. от 28.07.2012) Об обеспечении единства измерений … Официальная терминология

    прямое измерение - tiesioginis matavimas statusas T sritis Standartizacija ir metrologija apibrėžtis Matuojamojo dydžio vertės nustatymas tiesiog iš eksperimento duomenų. pavyzdys(iai) Kūno masės matavimas skaitmeninėmis svarstyklėmis. atitikmenys: angl. direct… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    прямое измерение - tiesioginis matavimas statusas T sritis fizika atitikmenys: angl. direct measurement vok. direkte Messung, f rus. непосредственное измерение, n; прямое измерение, n pranc. mesure directe, f … Fizikos terminų žodynas - У этого термина существуют и другие значения, см. Измерение (значения). Измерение совокупность операций для определения отношения одной (измеряемой) величины к другой однородной величине, принятой за единицу, хранящуюся в техническом… … Википедия

    Измерение - операция, посредством которой определяется отношение одной (измеряемой) величины к другой однородной величине (принимаемой за единицу); число, выражающее такое отношение, называется численным значением измеряемой величины.… … Энциклопедический словарь по металлургии

1.Методы измерения:прямые и косвенные.Прямые -когда измеряется непосредственно сама измеряемая величина.(измерение темп ртутным термометром)Косвенное -когда измеряется не сама изм.вел. а величины функционально связанные с нею.(измеряют U и R а затем рассчитывают I) По принципу методы измерения делят на: 1Метод непосредственной оценки (измерение длины метром).2Метод сравнения с мерой (измерение массы груза с помощью образцовых гирь)Мера -тех.средство высокой точности измерения. 3Дифференциальный метод -при этом методе измеряется не сама изм.вел R x а ее отклонение от заданной величины R 0 .Для измерения используется специальная мостовая схема кот состоит из 4плеч: R x, R 0 , R 1 , R 2 . В схеме всегда R 1 =R 2 .Балластные сопротивления для повышения точности измерения: СД-диаганаль питания, АВ-измерительная диаганаль.Измерит схема находится в равновесии т.е потенциалы точек АиВ равны(φ А = φ В)Если выполняется условие R x R 2 =R 0 R 1 если R x =R 0 схема находится в равновесии.Если Rx отличается от R 0 то потенциал т.А отличается от потенциала т.В разность потенциалов= ∆φ= φ А -φ В (измеряется прибором).R 0 может состоять из нескольких последовательно включенных сопротивлений разной величины.Такое устройство наз магазином сопротивлений. 4Нулевой метод -при этом методе в качестве изм.прибора используется гальванометр,кот определяет разность потенциалов в изм.диаганале.Если измеряемой сопротивление R x отличается от R 0 то появляется разность потенциалов и перемещая ползунок R 0 добиваются чтобы гальванометр показывал 0.по положению ползунка и шкале определяют значение R x .5Компенсационные метод (является разновидностью нулевого и еще наз методом силовой компенсации)Разность потенциалов усиливается электронным усилителем и постоупает на реверсивный электродвигатель кот начинает перемещать ползунок R 0 и стрелку ук-теля до тех пор пока не сравняются потенциалы точек АиВ.

2.Погрешность измерения делится на Абсалютную,Относительную, Приведенную.1.Абсалютная погрешность -разность между значениями измеряемой величины и ее действит.значением.За дествит.значение принимается показания образцового прибора. ∆ абс =±(А изм -А дейст).2Приведенная -отношениеабсалютной погрешности к нормированному значению,выражается в %. ∆ прив = ∆ абс /N*100.3.Относительная -отношение абсолютной погрешности к измеренной величине,выражается в %.Погрешности могут систематич (обусловлена конструкцией прибора и не зависит от внешних факторов)случайная (зависит от условий измерения,изменение параметров окр.среды,питания)промах (вызвана неправильными действиями оператора)Допустимые погрешности ограничиваются классом точности прибора.Он определяетяс заводом изготовителем и указывается на шкале прибора или в его паспорте. Класс точности-обощенная хар-ка прибора,ограничивающая систематич и случайные погрешности.(1;1,5;2;2,5;3;4)10 n .n-ук-тель степени,единица илиотриц число..Чем не выше цифра класса точности,тем ниже точность измерения(ртутный термометр показвает темп 21,5 а показание образцового термометра-21,9. = ∆ абс /А изм *100%-относительная погрешность.К=∆ абс /N*100%-приведенная погрешность.

3.Автоматич контроль (АК)-задачей является измерение параметров техпроцесса и отображение инфы о текущем значении параметра показывающими и регистрирующими приборами.При автоматич контроле средства автоматизации не вмешиваются в управление техпроцессом даже при создании аварийной ситуации..АК может быть местным и дистанционным.При местном АК датчики и первич. Преобразователи устанавливаются непосредственно на тех.оборудовании.Показывающин приборы могут находиться на оборудовании а регистрирующие на местных щитах кот размещены на раб.месте ОТП. Дистанционный контроль упрощает управлениетехпроцессом.На раб.месте ОТП на щите расположены средства ДУ регулирующими органами(GLE-c этой панели оператор может изменить положение регулирующего органа и по прибору на этой панели контролировать насколько % открылся/закрылся регулирующий орган а по вторичному прибору наблюдать как изменилось значение контролируемого параметра. Автоматич сигнализация- предназначена для сигнализации отклонений значений параметра от заданного значения.Бывает световая и звуковая.Световая(выполняется пневматич или электрич лампами) Звуковая(электрич звонками,сиренами и ревунами).Сигнализация может быть технологич и аварийной.Технологич-предупреждает ОТП что параметр отклонился от нормы.Аварийная-техпроцесс приближается к аварийному состоянию.Используют сирены и ревуны.

4.Автоматич регулирование.САР предназначена для содержания регулируемого параметра на заданном уровне с заданной точностью длительное время.САР работает по след алгоритму:ПП получает онформацию о текущем значении регулируемого параметра и преобразует в унифиц сигнал.Тот поступает на ВП для отображения информации и на АР.АР сравнивает полученную инфу с заданием определяет величину и знак рассогласования и в соответствии с выбранным законом регулирования управляющее воздействие поступает на регулирующий орган кот изменяет энергетичи или технологич потоки и возвращает регулируемую величину к заданному значению.ОТП непосредственно не участчует в упралении а только наблюдает за ходом техпроцесса и при необходимости изменяет задание на АР

© 2024 skudelnica.ru -- Любовь, измена, психология, развод, чувства, ссоры