Схема строения нуклеотида днк и рнк. Структура и биологическая роль нуклеотидов, нуклеиновых кислот

Главная / Бывшие

Нуклеотидный состав, т.е. набор и соотношение нуклеотидных компонентов, служит очень важной характеристикой нуклеиновых кислот. Один из основных путей установления состава нуклеиновых кислот основан на исследовании продуктов их гидролитического расщепления. Поскольку межнуклеотидные связи в полинуклеотидах являются сложноэфирными, то полинуклеотидные цепи способны гидролизоваться как в кислой, так и щелочной среде.

Химический гидролиз ДНК почти не используется из-за осложнения его побочными процессами. Более предпочтителен ферментативный гидролиз ДНК под действием нуклеаз. Обычно для этой цели используют змеиный яд, в котором содержатся ферменты, расщепляющие сложноэфирную связь с фосфорной кислотой (фосфодиэстеразы и фосфомоноэстеразы). Нуклеазы проявляют специфичность по отношению к типу нуклеиновых кислот; их делят на рибонуклеазы и дезоксирибонуклезы.

Выделение и идентификацию компонентов нуклеиновых кислот производят с помощью физико-химических методов. Очень важную роль в разделении сложных смесей играют хроматографические методы. Пиримидиновые и пуриновые основания, обладающие вследствие ароматического характера заметным поглощением около 260 нм, обычно идентифицируют с помощью УФ-спектроскопии. Поскольку нуклеотиды имеют кислотный характер и способны находиться в ионизированном состоянии, то для их идентификации используют также электрофорез.

Наряду с определением нуклеотидного состава важнейшая задача состоит и в установлении нуклеотидной последовательности, т.е. порядка чередования нуклеотидных звеньев. Общий подход заключается в использовании блочного метода: сначала полинуклеотидную цепь направленно расщепляют на более мелкие блоки – олигомеры и определяют в них нуклеотидную последовательность. Такой анализ повторяют дважды, используя во второй раз такие расщепляющие агенты, которые делят цель на фрагменты в иных местах по сравнению с первым разом. Полинуклеотидную цепь расщепляют на довольно короткие фрагменты. Более длинные олигонуклеотиды пока еще трудно поддаются изучению.

Первичная структура нуклеиновых кислот определяется природой и последовательностью нуклеотидных звеньев, связанных сложноэфирными связями между пентозами и фосфатными группами (рис 13).

Рис. 13. Первичная структура участка цепи нуклеиновых кислот

В составе молекулы ДНК выделено значительно большее число нуклеотидных остатков, чем в молекуле РНК. Молекулярная мас­са ДНК порядка 10 млн; ДНК в условиях клетки нерастворима. Длина молекул ДНК человека состав­ляет примерно 3 - 5 см; молекула РНК значительно короче - менее 0,01 см.

Вторичная структура нуклеиновых кислот. Согласно вторичной структуре полинуклеотидная цепь ДНК представляет собой двойную спираль, в которой пуриновые и пиримидиновые основания направлены внутрь. Между пуриновым основаниями одной цепи и пиримидиновым основанием другой цепи имеются водородные связи, стабилизирующие такую структуру. Основания, образующие пары, связанные водородными связями,называются комплементарными . В ДНК комплементарными будут: аденин – тимин, образующие между собой две водородные связи, и гуанин – цитозин, связанные тремя водородными связями (рис 14). Это означает, что пуриновым основаниям аденину и гуанину в одной цепи будут соответствовать пиримидиновые основания тимин и цитозин в другой цепи. Полинуклеотидные цепи, образующие двойную спираль, не идентичны, но комплементарны между собой.

Рис. 14. Водородные связи в паре оснований гуанин -цитозин (а), аденин – тимин (б)

Макромолекулы ДНК связаны между собой попарно при помощи водородных связей в виде двойной спирали постоян­ного диаметра (рис. 15). Остатки нуклеи­новых оснований направлены внутрь спи­рали, диаметр которой равен примерно 2 нм.

На один виток спирали приходится 10 пар оснований. Для обеспечения наи­большей устойчивости этой структуры во­дородных связей должно быть максималь­но много. Только при выполнении это­го условия обеспечивается экспериментально доказанное постоянство суммарных размеров боковых групп и неизменность диаметра двойной спирали на всем ее протяже­нии. В этой взаимной обусловленности последовательности звень­ев в обеих цепях заключается принцип комплементарности.

Комплементарность цепей и последовательность звеньев со­ставляют химическую основу важнейших функций нуклеиновых кислот: ДНК - хранение и передача наследственной информа­ции, а РНК - непосредственное участие в биосинтезе белка. Мо­лекулярная масса ДНК варьирует от нескольких миллионов до десятка миллиардов, у РНК - от десятка тысяч до нескольких миллионов.

Комплементарность оснований лежит в основе закономерностей, сформулированных Э. Чаргаффом, которым подчиняется нуклеотидный состав ДНК различного происхождения.

Правила Чаргаффа:

1) количество пуриновых оснований равно количеству пиримидиновых оснований, т.е. (А+Г)=(Ц+Т).

2) Количество аденина равно количеству тимина (А=Т); аналогично количество гуанина равно количеству цитозина (Г=Ц).

3) Количество оснований, содержащих аминогруппу в положении 4 пиримидинового и положении 6 пуринового ядра, равно количеству оснований, содержащих в этих же положениях оксогруппу. Это означает, что А+Ц=Г+Т.

Для РНК правила Чаргаффа либо не выполняются, либо выполняются с некоторым приближением. Это обусловлено тем, что в составе РНК содержится много минорных оснований.

Сравнение макромолекулы ДНК с винтовой лестницей наводит на мысль об ее хиральности. Действительно, природные ДНК обладают оптической активностью. В то же время смеси нуклеотидов, составляющих ДНК, а также разупорядоченные полинуклеотические цепи оптически неактивны. Это свидетельствует о том, что оптическая активность природных ДНК связана с хиральностью их вторичной структуры.

Каркас спирали образован чередующимися углеводными и фосфатными остатками. Окружающая водная среда контактирует с гидрофильной частью спирали, а внутренняя часть спирали (основания) с водой не контактирует.

Молекула ДНК, в отличие от молекулы РНК, в большинстве случаев состоит из двух комплементарных взаимозакрученных цепей. В зависимости от длины витка и угла спирали, а также ряда других ее геометрических параметров, различают, более де­сяти разнообразных упорядоченных спиральных структур ДНК. В стабилизации этих структур наряду с водородными связями, действующими поперек спирали, большую роль играют межмо­лекулярные взаимодействия, направленные вдоль спирали между соседними пространственно сближенными азотистыми основа­ниями. Поскольку эти взаимодействия направлены вдоль стоп­ки азотистых оснований молекулы ДНК, их называют стэкинг-взаимодействиями. Таким образом, взаимодействия азотистых оснований между собой скрепляют двойную спираль молекулы ДНК и вдоль, и поперек ее оси.

Сильное стэкинг-взаимодействие всегда усиливает водород­ные связи между основаниями, способствуя уплотнению спира­ли. Вследствие этого молекулы воды из окружающего раствора связываются в основном с пентозофосфатным остовом ДНК, по­лярные группы которого находятся на поверхности спирали. При ослаблении стэкинг-взаимодействия молекулы воды, про­никая внутрь спирали, конкурентно взаимодействуют с поляр­ными группами оснований, инициируют дестабилизацию и спо­собствуют дальнейшему распаду двойной спирали. Все это сви­детельствует о динамичности вторичной структуры ДНК под воздействием компонентов окружающего раствора. Двойная спираль характерна для большинства молекул ДНК. Однако ДНК может иметь и другие формы. В некоторых вирусах содержится одноцепочечная ДНК, встречаются также кольцевые формы.


Биспиральные структуры в молекулах РНК возникают в пре­делах одной и той же цепи в тех зонах, где расположены комплементарные азотистые основания аденин - урацил и гуанин - цитозин (рис. 16). В результате вторичная структура молеку­лы РНК содержит биспиральные участки и петли, число и раз­меры которых определяются первичной структурой молекулы и составом окружающего раствора.

Рис. 16. Вторичная структура молекулы РНК

Третичная структура нуклеиновых кислот. Двойная спираль молекул ДНК существует в виде линейной, кольцевой, суперкольцевой и компактных клубковых форм. Между этими формами совершаются взаимные переходы при действии особой группы ферментов – топоизомераз, изменяющих пространственную структуру (рис 17).


Рис. 17. Третичная структура молекулы ДНК:

а -линейная, б - кольцевая, в - суперкольцевая, г - компактный клубок

Третичная структура многих молекул РНК пока еще требует окончательного выяснения, но уже установлено, что она зависит не только от первичной и вторичной структуры, но и от состава окружающего раствора.









Нуклеиновые кислоты , как и белки, необходимы для жизни. Они представляют собой генетический материал всех живых организмов вплоть до самых простых вирусов. Название «нуклеиновые кислоты» отражает тот факт, что локализуются они главным образом в ядре (nucleus - ядро). При специфическом окрашивании на нуклеиновые кислоты ядра бывают очень хорошо видны в световом микроскопе.

Выяснение структуры ДНК (дезоксирибонуклеиновой кислоты) - одного из двух существующих типов нуклеиновых кислот - открыло новую эпоху в биологии, так как позволило, наконец, понять, каким образом живые организмы хранят информацию, необходимую для регулирования их жизнедеятельности и каким образом передают эту информацию своему потомству. Выше мы уже отметили, что нуклеиновые кислоты состоят из мономерных единиц, называемых нуклеотидами. Из нуклеотидов строятся чрезвычайно длинные молекулы - полинуклеотиды.

Чтобы понять структуру полинуклеотидов, необходимо, следовательно, сначала ознакомиться с тем, как построены нуклеотиды .

Нуклеотиды. Строение нуклеотидов

Молекула нуклеотида состоит из трех частей - пятиуглеродного сахара, азотистого основания и фосфорной .

Сахар, входящий в состав нуклеотида , содержит пять углеродных атомов, т. е. представляет собой пентозу. В зависимости от вида пентозы, присутствующей в нуклеотиде, различают два типа нуклеиновых кислот - рибонуклеиновые кислоты (РНК), которые содержат рибозу, и дезоксирибонуклеиновые кислоты (ДНК), содержащие дезоксирибозу. В дезоксирибозе - ОН-группа при 2-м атоме углерода заменена на атом Н, т. е. в ней на один атом кислорода меньше, чем в рибозе.

В обоих типах нуклеиновых кислот содержатся основания четырех разных видов: два из них относятся к классу пуринов и два - к классу пиримидинов. Основной характер этим соединениям придает включенный в кольцо азот. К числу пуринов относятся аденин (А) и гуанин (Г), а к числу пиримидинов - цитозин (Ц) и тимин (Т) или урацил (У) (соответственно в ДНК или РНК). Тимин химически очень близок к урацилу (он представляет собой 5-метилурацил, т. е. урацил, в котором у 5-го углеродного атома стоит метильная группа). В молекуле пуринов имеется два кольца, а в молекуле пиримидинов - одно.

Основания принято обозначать первой буквой их названия: А, Г, Т, У и Ц.


Нуклеиновые кислоты являются кислотами потому, что в их молекуле содержится фосфорная кислота.

На рисунке показано, как сахар, основание и фосфорная кислота, объединяясь, образуют молекулу нуклеотида . Соединение сахара с основанием происходит с выделением молекулы воды, т. е. представляет собой реакцию конденсации. Для образования нуклеотида требуется еще одна реакция конденсации - между сахаром и фосфорной кислотой.

Разные нуклеотиды отличаются друг от друга природой Сахаров и оснований, которые входят в их состав.

Роль нуклеотидов в организме не ограничичается тем, что они служат строительными блоками нуклеиновых кислот; некоторые важные коферменты также представляют собой нуклеотиды. Таковы, например, аденозинтрифосфат (АТФ), циклический аденозинмонофосфат (цАМФ), кофермент А, никотинамидаденинди-нуклеотид (НАД), никотинамидадениндинуклеотидфосфат (НАДФ) и флавинадениндинуклеотид (ФАД).

Многих людей всегда интересовало, почему некоторые признаки, имеющиеся у родителей, передаются ребенку (например, цвет глаз, волос, форма лица и другие). Наукой было доказано, что данная передача признака зависит от генетического материала, или ДНК.

Что такое ДНК?

Нуклеотид

Как было сказано, основной структурной единицей дезоксирибонуклеиновой кислоты является нуклеотид. Это сложное образование. Состав нуклеотида ДНК следующий.

По центру нуклеотида находится пятикомпонентный сахар (в ДНК в отличие от РНК, в которой содержится рибоза). К нему присоединяется азотистое основание, которых выделяют 5 типов: аденин, гуанин, тимин, урацил и цитозин. Кроме того, каждый нуклеотид имеет в своем составе и остаток фосфорной кислоты.

В состав ДНК входят только те нуклеотиды, которые имеют указанные структурные единицы.

Все нуклеотиды расположены в виде цепи и следуют друг за другом. Группируясь по триплетам (по три нуклеотида), они образуют последовательность, в которой каждый триплет соответствует определенной аминокислоте. В результате образуется цепь.

Они объединяются между собой за счет связей азотистых оснований. Основная связь между нуклеотидами параллельных цепей - водородная.

Нуклеотидные последовательности являются основой генов. Нарушение в их структуре ведет к сбою в синтезе белков и проявлению мутаций. В состав ДНК входят одинаковые гены, определяющиеся практически у всех людей и отличающие их от других организмов.

Модификация нуклеотида

В некоторых случаях для более стабильной передачи того или иного признака используется модифицирование азотистого основания. Химический состав ДНК изменяется за счет присоединения метильной группы (СН3). Подобная модификация (на одном нуклеотиде) позволяет стабилизировать генную экспрессию и передачу признаков дочерним клеткам.

Подобное “улучшение” структуры молекулы никоим образом не сказывается на объединении азотистых оснований.

Данная модификация используется и при инактивации Х-хромосомы. В результате этого образуются тельца Барра.

При усиленном канцерогенезе анализ ДНК показывает, что цепочка нуклеотидов была подвержена метилированию на многих основаниях. В проведенных наблюдениях было замечено, что источником мутации обычно служит метилированный цитозин. Обычно при опухолевом процессе деметилирование может способствовать остановке процесса, но за счет своей сложности данная реакция не проводится.

Структура ДНК

В строении молекулы выделяют два типа структуры. Первый тип - линейная последовательность, образованная нуклеотидами. Их построение подчиняется некоторым законам. Запись нуклеотидов на молекуле ДНК начинается с 5’-конца и заканчивается 3’-концом. Вторая цепь, расположенная напротив, строится таким же образом, только в пространственном отношении молекулы находятся одна напротив другой, причем 5’-конец одной цепи расположен напротив 3’-конца второй.

Вторичная структура ДНК - спираль. Обуславливается наличием водородных связей между располагающимися друг напротив друга нуклеотидами. Водородная связь образуется между комплементарными азотистыми основаниями (например, напротив аденина первой цепи может находиться только тимин, а напротив гуанина - цитозин либо урацил). Подобная точность обусловлена тем, что построение второй цепи происходит на основе первой, поэтому между азотистыми основаниями наблюдается точное соответствие.

Синтез молекулы

Каким же образом образуется молекула ДНК?

В цикле ее образования выделяют три стадии:

  • Рассоединение цепей.
  • Присоединение синтезирующих единиц к одной из цепей.
  • Достраивание второй цепи по принципу комплементарности.

На стадии разъединения молекулы основную роль играют ферменты - ДНК-гиразы. Данные ферменты ориентированы на разрушение водородных связей между цепями.

После расхождения цепей в дело вступает основной синтезирующий фермент - ДНК-полимераза. Ее присоединение наблюдается на участке 5’. Далее данный фермент движется в сторону 3’-конца, попутно присоединяя необходимые нуклеотиды с соответствующими азотистыми основаниями. Дойдя до определенного участка (терминатора) на 3’-конце, полимераза отсоединяется от исходной цепи.

После того как образовалась дочерняя цепь, между основаниями образуется водородная связь, которая и скрепляет вновь образованную молекулу ДНК.

Где можно найти данную молекулу?

Если углубиться в строение клеток и тканей, то можно увидеть, что ДНК в основном содержится в отвечает за образование новых, дочерних, клеток или их клонов. При этом находящаяся в нем, разделяется между новообразованными клетками равномерно (образуются клоны) или по частям (часто можно наблюдать такое явление при мейозе). Поражение ядра влечет за собой нарушение образования новых тканей, что приводит к мутации.

Кроме того, особый тип наследственного материала содержится в митохондриях. В них ДНК несколько отличается от таковой в ядре (митохондриальная дезоксирибонуклеиновая кислота имеет кольцевидную форму и выполняет несколько другие функции).

Сама молекула может выделяться из любых клеток организма (для исследования чаще всего используют мазок с внутренней стороны щеки либо кровь). Отсутствует генетический материал только в отшелушивающемся эпителии и некоторых клетках крови (эритроцитах).

Функции

Состав молекулы ДНК обуславливает выполнение ею функции передачи информации из поколения в поколение. Это происходит за счет синтеза определенных белков, обуславливающих проявление того или иного генотипического (внутреннего) или фенотипического (внешнего - например, цвет глаз или волос) признака.

Передача информации осуществляется за счет реализации ее из генетического кода. На основании сведений, зашифрованных в генетическом коде, происходит выработка специфических информационных, рибосомальных и транспортных РНК. Каждая из них отвечает за определенное действие - информационная РНК используется для синтеза белков, рибосомальная участвует в сборке белковых молекул, а транспортная образует соответствующие белки.

Любой сбой в их работе или изменение структуры приводят к нарушению выполняемой функции и появлению нетипичных признаков (мутаций).

ДНК-тест на отцовство позволяет определить наличие родственных признаков между людьми.

Генетические тесты

Для чего в настоящее время может использоваться исследование генетического материала?

Анализ ДНК используется для определения многих факторов или изменений в организме.

В первую очередь исследование позволяет определить наличие врожденных, передающихся по наследству заболеваний. К таким болезням можно отнести синдром Дауна, аутизм, синдром Марфана.

Для определения родственных связей также можно исследовать ДНК. Тест на отцовство уже давно получил широкое распространение во многих, в первую очередь юридических, процессах. Данное исследование назначают при определении генетического родства между внебрачными детьми. Часто этот тест сдают претенденты на наследство при возникновении вопросов со стороны органов власти.

4.2.1. Первичной структурой нуклеиновых кислот называется последовательность расположения мононуклеотидов в цепи ДНК или РНК . Первичная структура нуклеиновых кислот стабилизируется 3",5"-фосфодиэфирными связями. Эти связи образуются при взаимодействии гидроксильной группы в 3"-положении пентозного остатка каждого нуклеотида с фосфатной группой соседнего нуклеотида (рисунок 3.2),

Таким образом, на одном конце полинуклеотидной цепи имеется свободная 5"-фосфатная группа (5"-конец), а на другом - свободная гидроксильная группа в 3"-положении (3"-конец). Нуклеотидные последовательности принято записывать в направлении от 5"-конца к 3"-концу.

Рисунок 4.2. Структура динуклеотида, в состав которого входят аденозин-5"-монофосфат и цитидин-5"-монофосфат.

4.2.2. ДНК (дезоксирибонуклеиновая кислота) содержится в клеточном ядре и имеет молекулярную массу порядка 1011 Да. В состав её нуклеотидов входят азотистые основания аденин, гуанин, цитозин, тимин , углевод дезоксирибоза и остатки фосфорной кислоты. Содержание азотистых оснований в молекуле ДНК определяют правила Чаргаффа:

1) количество пуриновых оснований равно количеству пиримидиновых (А + Г = Ц + Т) ;

2) количество аденина и цитозина равно количеству тимина и гуанина соответственно (А = Т; Ц = Г) ;

3) ДНК, выделенные из клеток различных биологических видов, отличаются друг от друга величиной коэффициента специфичности:

(Г + Ц) /(А + Т)

Эти закономерности в строении ДНК объясняются следующими особенностями её вторичной структуры:

1) молекула ДНК построена из двух полинуклеотидных цепей, связанных между собой водородными связями и ориентированных антипараллельно (то есть 3"-конец одной цепи расположен напротив 5"-конца другой цепи и наоборот);

2) водородные связи образуются между комплементарными парами азотистых оснований. Аденину комплементарен тимин; эта пара стабилизируется двумя водородными связями. Гуанину комплементарен цитозин; эта пара стабилизируется тремя водородными связями (см. рисунок б) . Чем больше в молекуле ДНК пар Г-Ц, тем больше её устойчивость к действию высоких температур и ионизирующего излучения;

Рисунок 3.3. Водородные связи между комплементарными азотистыми основаниями.

3) обе цепи ДНК закручены в спираль, имеющую общую ось. Азотистые основания обращены внутрь спирали; кроме водородных, между ними возникают также гидрофобные взаимодействия. Рибозофосфатные части расположены по периферии, образуя остов спирали (см. рисунок 3.4).


Рисунок 3.4. Схема строения ДНК.

4.2.3. РНК (рибонуклеиновая кислота) содержится преимущественно в цитоплазме клетки и имеет молекулярную массу в пределах 104 - 106 Да. В состав её нуклеотидов входят азотистые основания аденин, гуанин, цитозин, урацил , углевод рибоза и остатки фосфорной кислоты. В отличие от ДНК, молекулы РНК построены из одной полинуклеотидной цепи, в которой могут находиться комплементарные друг другу участки (рисунок 3.5). Эти участки могут взаимодействовать между собой, образуя двойные спирали, чередующиеся с неспирализованными участками.

Рисунок 3.5. Схема строения транспортной РНК.

По особенностям структуры и функции различают три основных типа РНК:

1) матричные (информационные) РНК (мРНК) передают информацию о структуре белка из клеточного ядра на рибосомы;

2) транспортные РНК (тРНК) осуществляют транспорт аминокислот к месту синтеза белка;

3) рибосомальные РНК (рРНК) входят в состав рибосом, участвуют в синтезе белка.

Практически каждый слышал о существовании в живых клетках молекул ДНК и знает, что эта молекула ответственна за передачу наследственной информации. Огромная куча разных фильмов в той или иной степени строит свои сюжеты на свойствах маленькой, но гордой очень важной молекулы.

Однако мало кто хоть примерно сможет объяснить, что именно входит в состав молекулы ДНК и каким образом функционируют процессы считывания этой всей информации о «строении всего организма». Прочитать же без запинки «дезоксирибонуклеиновая кислота» способны и вовсе единицы.

Попробуем разобраться, из чего же состоит и как выглядит самая важная для каждого из нас молекула.

Строение структурного звена - нуклеотида

В состав молекулы ДНК входит множество структурных единиц, поскольку она является биополимером. Полимер - это макромолекула, которая состоит из множества маленьких, последовательно соединенных повторяющихся фрагментов. Подобно тому как цепь состоит из звеньев.

Структурным звеном макромолекулы ДНК является нуклеотид. В состав нуклеотидов молекулы ДНК входят остатки трех веществ - ортофосфорной кислоты, сахарида (дезоксирибозы) и одного из четырех возможных азотсодержащих оснований.

В состав молекулы ДНК входят азотистые основания: аденин (А), гуанин (Г), цитозин (Ц) и тимин (Т).

Состав цепи нуклеотидов отображают чередованием вошедших в нее оснований: -ААГЦГТТАГЦАЦГТ- и т.п. Последовательность может быть любая. Так формируется одинарная цепочка ДНК.

Спирализация молекулы. Явление комплементарности

Величина молекулы ДНК человека чудовищно огромна (в масштабах других молекул, конечно)! В геноме одной-единственной клетки (46 хромосом) содержится примерно 3,1 млрд пар нуклеотидов. Длина цепочки ДНК, составленной таким количеством звеньев, равняется примерно двум метрам. Трудно представить, каким образом настолько громоздкую молекулу можно разместить в пределах крохотной клетки.

Но природа позаботилась о более компактной упаковке и защите своего генома - две цепочки соединяются между собой азотистыми основаниями и образуют хорошо известную двойную спираль. Таким образом, удается сократить длину молекулы почти в шесть раз.

Порядок взаимодействия азотистых оснований строго определен явлением комплементарности. Аденин может соединяться исключительно с тимином, а цитозин взаимодействует только с гуанином. Эти комплементарные пары подходят друг другу как ключ и замок, как кусочки пазла.

Теперь давайте посчитаем, сколько же памяти в компьютере (ну или на флешке) должна занимать вся информация об этой маленькой (в масштабе нашего с вами мира) молекуле. Количество пар нуклеотидов - 3,1х10 9 . Всего значений 4, что означает - для одной пары достаточно 2-х бит информации (2 2 значений). Умножаем все это друг на друга и получаем 6200000000 бит, или 775000000 байт, или 775000 килобайт, или 775 мегабайт. Что примерно соответствует емкости CD диска или объему какой-нибудь 40-минутной серии фильма в среднем качестве.

Образование хромосом. Определение генома человека

Помимо спирализации, молекула еще неоднократно подвергается уплотнению. Двойная спираль начинает закручиваться подобно клубку ниток – этот процесс называется сверхспирализацией и происходит с помощью специального белка гистона, на который как на катушку наматывается цепочка.

Этот процесс сокращает длину молекулы еще в 25-30 раз. Подвергаясь еще нескольким уровням упаковки, все больше и больше уплотняясь, одна молекула ДНК совместно со вспомогательными белками формирует хромосому.

Вся информация, которая касается формы, вида и особенностей функционирования нашего организма определяется набором генов. Ген - это строго определенный участок молекулы ДНК. Он состоит из неизменной последовательности нуклеотидов. Более того, ген жестко определен не только составом, но и своим положением относительно других участков цепи.

Рибонуклеиновая кислота и ее роль в синтезе белка

Помимо ДНК существуют другие виды нуклеиновых кислот – матричная, транспортная и рибосомная РНК (рибонуклеиновая кислота). Цепи РНК намного меньше и короче, благодаря этому они способны проникать сквозь мембрану ядра.

Молекула РНК также является биополимером. Ее структурные фрагменты подобны тем, что входят в состав ДНК за небольшим исключением сахарида (рибозы вместо дезоксирибозы). Азотистых оснований четыре вида: знакомые нам А, Г, Ц и урацил (У) вместо тимина. На картинке выше все это наглядно показано.

Макромолекула ДНК способна передать информацию РНК в раскрученном виде. Раскручивание спирали происходит с помощью специального фермента, который разделяет двойную спираль на отдельные цепочки – как расходятся половинки замка-молнии.

В это же время, параллельно цепи ДНК создается комплементарная цепь РНК. Скопировав информацию и попав из ядра в среду клетки, цепочка РНК инициирует процессы синтеза закодированного геном белка. Синтез протеинов протекает в особых органеллах клетки - рибосомах.

Рибосома по мере прочтения цепочки определяет, в какой последовательности необходимо соединять аминокислоты, одна за другой - по мере считывания в РНК информации. Затем, синтезированная цепочка аминокислот принимает определенную 3D форму.

Эта объемная структурная молекула и является протеином, способным выполнять закодированные функции ферментов, гормонов, рецепторов и строительного материала.

Выводы

Для любого живого существа именно белок (протеин), является конечным продуктом каждого гена. Именно протеины определяют все то разнообразие форм, свойств и качеств, которые зашифрованы в наших клетках.

Уважаемые читатели блога , а вы знаете где находится ДНК , оставляйте комментарии или отзывы что вы хотели узнать. Кому то это очень пригодиться!

© 2024 skudelnica.ru -- Любовь, измена, психология, развод, чувства, ссоры