Какой рисунок можно нарисовать не отрывая руки. Решение задачки, как нарисовать конверт не отрывая руки

Главная / Любовь

9 выбрали

Помните, как мы с усердием и старанием пытались писать первые слова, не отрывая пера от бумаги? Как это было трудно – написать целое слово ни разу не приподняв ручку над тетрадью. И порой мы хитрили, прерывая ровный ряд закорючек, пока учительница не видит. А ведь это были просто слова "мама", "самолет" или "объявление". Зато мы с удовольствием чертили каракули на обороте тетради, и это получалось просто замечательно! Правда мы не знали, что кто-то пойдет гораздо дальше и найдет совсем иное применение "письму без отрыва" и детским каракулям.

Портреты "по спирали" Чен Хви Чонга

Если долго и вдумчиво рисовать спираль, не отрывая маркер или ручку от бумаги, то в конце-концов можно… нарисовать очень большую спираль. Это в том случае, если маркер в руках школьника, но если он попал в руки Чен Хви Чонг из Сингапура, то на листе ватмана из нескольких десятков витков рождается настоящий портрет. А виной всему – реклама! Уникального художника просто наняли прорекламировать ручку для художников фирмы Faber Castell. На первый взгляд кажется, что просто невозможно одной ручкой, не отрывая от бумаги создать точный портрет из разных по толщине и наклону линий, расположенных на разном расстоянии. Но если всмотреться, то начинает казаться, что это не так уж и сложно и… хочется попробовать самому нарисовать что-то похожее. Вот только удастся ли?

"Каракули" Винса Лоу (Vince Low)

Как часто новое- это просто хорошо забытое старое. Маленькие дети часто с удивительным упорством увлеченно рисуют каракули, но взрослые не находят в них никакого смыла, никакой определенной формы и тем более не возводят в ранг искусства. И лишь художник из Малайзии Винс Лоу превратил детскую забаву в нечто особенное.

Идея его ставшей знаменитой серии портретов "Faces" родилась из обычных набросков в записной книжке. Его портреты знаменитостей не просто удивительно схожи с оригиналами, они буквально передают живые эмоции, а ведь это "просто каракули"….

Еще более удивительными можно назвать портреты знаменитостей, созданные одной линией художником Пьером Эммануэлем Годе (Pierre Emmanuel Godet). Это уже не просто линии или бесформенные росчерки пера - тонкая непрерывная линия сплетает образы, сцены из жизни и создает маленький мир, раскрывая характеры образов, а может быть и выдавая их тайны….

Анимация Kazuhiko Okushita

С помощью одной непрерывной линии можно не только создать портрет или интересный рисунок. Если долго не отрывать карандаша от бумаги, передавая ему свои мысли и идеи, то может получиться… целый мультфильм как у японского режиссера и аниматора в одном лице Казухико Окушита! Главное не останавливаться….

I. Постановка проблемной ситуации.

Наверное, все помнят с детства, что очень популярна была следующая задача: не отрывая карандаша от бумаги и не проводя по одной линии дважды, начертить “открытый конверт”:

Попробуйте нарисовать “открытый конверт”.
Как вы видите, что у некоторых получается, а у некоторых нет. Почему это происходит? Как правильно рисовать, чтобы получилось? И для чего она нужна? Чтобы ответить на эти вопросы, я расскажу вам, один исторический факт.

Город Кенигсберг (после мировой войны он называется Калининград) стоит на реке Преголь. Некогда там было 7 мостов, которые связывали между собой берега и два острова. Жители города заметили, что они никак не могут совершить прогулку по всем семи мостам, пройдя по каждому из них ровно один раз. Так возникла головоломка: “можно ли пройти все семь кенигсбергских мостов ровно один раз и вернуться в исходное место?”.

Попробуйте и вы, может у кого-нибудь получится.

В 1735 году эта задача стала известна Леонарду Эйлеру. Эйлер выяснил, что такого пути нет, т. е. доказал, что эта задача неразрешима. Конечно, Эйлер решил не только задачу о кенигсбергский мостах, а целый класс аналогичных задач, для которых разработал метод решения. Можно заметить, что задача состоит в том, чтобы по карте провести маршрут – линию, не отрывая карандаша от бумаги, обойти все семь мостов и вернуться в начальную точку. Поэтому Эйлер стал рассматривать вместо карты мостов схему из точек и линий, отбросив мосты, острова и берега, как не математические понятия. Вот что у него получилось:

А, В – острова, M, N – берега, а семь кривых – семь мостов.

Теперь задача такая – обойти контур на рисунке так, чтобы каждая кривая проводилась ровно один раз.
В наше время такие схемы из точек и линий стали называть графами, точки называют вершинами графа, а линии – ребрами графа. В каждой вершине графа сходится несколько линий. Если число линий четно, то вершина называется четная, если число вершин нечетно, то вершина называется нечетной.

Докажем неразрешимость нашей задачи.
Как видим, в нашем графе все вершины нечетные. Для начала докажем, что, если обход графа начинается не с нечетной точки, то он обязательно должен закончится в этой точке

Рассмотрим для примера вершину с тремя линиями. Если мы по одной линии пришли, по другой вышли, и по третьей опять вернулись. Все дальше идти некуда (ребер больше нет). В нашей задаче мы сказали, что все точки нечетные, значит, выйдя из одной из них, мы должны закончить сразу в трех остальных нечетных точках, чего не может быть.
До Эйлера ни кому в голову не приходило, что головоломка о мостах и другие головоломки с обходом контура, имеет отношение к математике. Анализ Эйлера таких задач “является первым ростком новой области математики, сегодня известной под названием топология”.

Топология – это раздел математики, изучающий такие свойства фигур, которые не меняются при деформациях, производимых без разрывов и склеивания.
Например, с точки зрения топологии, круг, эллипс, квадрат и треугольник обладают одинаковыми свойствами и являются одной и той же фигурой, так как можно деформировать одну в другую, а вот кольцо к ним не относится, так как, чтобы его деформировать в круг, необходима склейка.

II. Признаки вычерчивания графа.

1. Если в графе нет нечетных точек, то ее можно нарисовать одним росчерком, не отрывая карандаша от бумаги, начиная с любого места.
2. Если в графе две нечетные вершины, то ее можно начертить одним росчерком, не отрывая карандаша от бумаги, причем вычерчивать нужно начинать в одной нечетной точке, а закончить в другой.
3. Если в графе более двух нечетных точек, то ее нельзя начертить одним росчерком карандаша.

Вернемся к нашей задаче с открытым конвертом. Подсчитаем количество четных и нечетных точек: 2 нечетные и 3 четные, значит, эту фигуру можно начертить одним росчерком, причем начать нужно в нечетной точке. Попробуйте, теперь у всех получилось?

Закрепим полученные знания. Определите, какие фигуры можно построить, а какие нельзя.

а) Все точки четные, поэтому эту фигуру можно построить, начиная с любого места, например:

б) В этой фигуре две нечетные точки, поэтому ее можно построить не отрывая, карандаша от бумаги, начиная с нечетной точки.
в) В этой фигуре четыре нечетные точки, поэтому ее нельзя построить.
г) Здесь все точки четные, поэтому ее можно построить, начиная с любого места.

Проверим, как вы усвоили новые знания.

III. Самостоятельная работа по карточкам с индивидуальными заданиями.

Задание : проверить, можно ли совершить прогулку по всем мостам, пройдя по каждому из них ровно один раз. И если можно, то нарисовать путь.

IV. Итоги занятия.

Математик Леонард Эйлер однажды задумался над вопросом, можно ли перейти через все мосты в том городе, где он тогда жил, так, чтобы ни через один мост не проходить дважды? Этот вопрос положил начало новой увлекательной задаче: если дана геометрическая фигура, как начертить ее на бумаге одним росчерком пера, не проводя дважды ни одну линию?

Инструкция

Предполагается, что заданная фигура состоит из точек, соединенных прямыми или искривленными отрезками. Следовательно, в каждой такой точке сходится определенное число отрезков. Такие фигуры в математике принято называть графами.

Если в точке сходится четное число отрезков, то и саму такую точку называют четной вершиной. Если число отрезков нечетное, то вершина называется нечетной. Например, квадрат, в котором проведены обе диагонали, обладает четырьмя нечетными вершинами и одной четной - в точке пересечения диагоналей.

У отрезка по определению два конца, и следовательно, он всегда соединяет две вершины. Поэтому, просуммировав все входящие отрезки для всех вершин графа, можно получить только четное число. Следовательно, каков бы ни был граф, нечетных вершин в нем всегда будет четное количество (в том числе ноль).

Граф, в котором вовсе нет нечетных вершин, всегда можно начертить, не отрывая руки от бумаги. При этом все равно, с какой вершины начинать.

Если нечетных вершин всего две, то такой граф тоже уникурсален. Путь обязательно должен начинаться в одной из нечетных вершин, а закончиться - в другой из них.

Фигура, в которой нечетных вершин четыре или больше, не уникурсальна, и без повторений линий начертить ее не удастся. Например, тот же квадрат с проведенными диагоналями не уникурсален, так как у него четыре нечетных вершины. Но квадрат с одной диагональю или «конверт» - квадрат с диагоналями и «крышечкой» - можно начертить одной линией.

Чтобы решить задачу, нужно представить, что каждая проведенная линия исчезает из фигуры - второй раз по ней пройти нельзя. Следовательно, изображая уникурсальную фигуру, нужно следить, чтобы оставшаяся часть работы не распадалась на не связанные между собой части. Если такое случится, довести дело до конца уже не получится.


Внимание, только СЕГОДНЯ!

Все интересное

Куб - распространенная геометрическая фигура, знакомая практически каждому, кто хотя бы немного знаком с геометрией. При этом она имеет строго определенное количество граней, вершин и ребер. Куб - это геометрическая фигура, имеющая 8 вершин. Помимо…

Треугольник - одна из наиболее распространенных геометрических фигур, которая имеет большое количество разновидностей. Одной из них является прямоугольный треугольник. Чем он отличается от других подобных фигур? Обыкновенный треугольник…

Построение разнообразных геометрических фигур – занятие не только увлекательное, но и полезное. Эллипсы, круги, прямоугольники, многоугольники и квадраты могут потребоваться вам для воплощения в жизнь каких-то дизайнерских решений, оформительских…

Призма («нечто отпиленное» в переводе с греческого) состоит из двух оснований одинаковой формы, которые лежат в параллельных плоскостях, и боковых граней. Боковые грани имеют форму параллелограмма, а их количество зависит от числа вершин…

Треугольник – одна из простейших классических фигур в математике, частный случай многоугольника с числом сторон и вершин, равном трем. Соответственно, высот и медиан у треугольника тоже по три, а найти их можно по известным формулам, исходя из…

Иногда около выпуклого многоугольника можно начертить окружность таким образом, чтобы вершины всех углов лежали на ней. Такую окружность по отношению к многоугольнику надо называть описанной. Ее центр не обязательно должен находиться внутри…

Результатом соединения в четырехугольнике противоположных друг другу вершин является построение его диагоналей. Существует общая формула, связывающая длины этих отрезков с другими измерениями фигуры. По ней, в частности, можно найти длину диагонали…

Высота треугольника - это прямая, которая проведена из одной из его вершин к противоположной стороне под углом в 90 градусов. Любой треугольник имеет 3 высоты. Но в зависимости от типа треугольника построение его высот имеет некоторые особенности. …

Многоугольник – это плоская геометрическая фигура, состоящая из отрезков, пересекающихся в трех или более точках. При этом многоугольник является замкнутой ломаной линией. В многоугольнике точки - это вершины, а отрезки – стороны. Вершины,…

Изобразить на листе бумаги квадрат или правильный треугольник довольно просто. А как быть, если необходимо начертить плоскую фигуру с пятью гранями? Чтобы нарисовать такую фигуру, вам понадобятся самые простые инструменты. Вам понадобится- лист…

Медиана – отрезок, который берет начало в одной из вершин треугольника и заканчивается в точке, делящей противолежащую сторону треугольника на две равные части. Построить медиану, не проводя математических вычислений, довольно просто. Вам…

Инструкция

Предполагается, что заданная фигура состоит из точек, соединенных прямыми или искривленными отрезками. Следовательно, в каждой такой точке сходится определенное отрезков. Такие фигуры принято называть графами.

Если в точке сходится четное число отрезков, то и саму такую точку называют четной вершиной. Если число отрезков нечетное, то вершина называется нечетной. Например, квадрат, в котором проведены обе , обладает четырьмя нечетными вершинами и одной четной - в точке пересечения диагоналей.

У отрезка по определению два , и следовательно, он всегда соединяет две вершины. Поэтому, просуммировав все входящие отрезки для всех вершин графа, можно только четное число. Следовательно, каков бы ни был граф, нечетных вершин в нем всегда будет четное количество (в том ноль).

Граф, в котором вовсе нет нечетных вершин, всегда можно начертить, не отрывая руки от бумаги. При этом все равно, с какой вершины начинать.

Если нечетных вершин всего две, то такой граф тоже уникурсален. Путь обязательно должен начинаться в одной из нечетных вершин, а закончиться - в другой из них.

Фигура, в которой нечетных вершин четыре или больше, не уникурсальна, и без повторений линий начертить ее не . Например, тот же квадрат с проведенными диагоналями не уникурсален, так как у него четыре нечетных вершины. Но квадрат с одной диагональю или «конверт» - квадрат с диагоналями и «крышечкой» - можно начертить одной линией.

Чтобы решить задачу, нужно представить, что каждая проведенная линия исчезает из фигуры - второй раз по ней пройти нельзя. Следовательно, изображая уникурсальную фигуру, нужно следить, чтобы оставшаяся часть работы не распадалась на не связанные между собой части. Если случится, довести дело до конца уже не получится.

Источники:

  • Как нарисовать не отрывая руки закрытый конверт?

Квадрат – это равносторонний и прямоугольный четырехугольник. Его нарисовать очень просто. Начните тренировку сначала на тетради в клетку. С помощью простого карандаша и невидимого квадрата из научитесь рисовать квадрат не отрывая руку от бумаги.

Вам понадобится

  • - простой карандаш;
  • - листок в клетку;
  • - лист А4;
  • - линейка.

Инструкция

Можно попробовать так: без использования линейки и точек. Изобразите квадрат посредине листа. Сначала не старайтесь нарисовать его четырьмя идеальными линиями. Чертите стороны квадрата «навылет», наводя дополнительные линии, пока квадрат не получится квадратом. При этом не отрывайте руку от бумаги. Проводите линии параллельно краям бумаги. Сделайте несколько таких тренировочных упражнений. Этот научит вас ровные линии и квадрат не отрывая руки .

Источники:

  • рисунок квадратами

В нарисованных городских или сельских пейзажах нередко фигурируют различные мосты . Эта особенная постройка может выглядеть изящной и невесомой, а может, наоборот, создавать впечатление строгого и тяжелого сооружения.

Вам понадобится

  • карандаш, бумага, краски

Инструкция

Равновеликие и равносоставленные фигуры

С равными фигурами не следует смешивать равновеликие и равносоставленные фигуры – при всей близости данных понятий.
Равновеликими называются такие фигуры, которые имеют равную площадь, если это фигуры на плоскости, или равный объем, если речь идет о трехмерны телах. Совпадение всех элементов, составляющих данные фигуры, не является обязательным. Равные фигуры будут равновеликими всегда, но не всякие равновеликие фигуры можно назвать равными.

Понятие равносоставленности чаще всего применяют к многоугольникам. Оно подразумевает, что многоугольники можно разбить на одинаковое количество соответственно равных фигур. Равносоставленные многоугольники всегда являются равновеликими.

Источники:

  • Что такое равные фигуры

Если вы попали на эту страницу, то вы наверняка уже пытались решить «тест 9 точек», а именно соединить девять точек четырьмя прямыми линиями не отрывая ручки от листа бумаги. Если у вас не получилось разгадать эту головоломку, не отчаивайтесь. На этой странице вы сможете найти несколько решений этой знаменитой непростой задачи о девяти точках, которые напрягли умы уже многих тысяч, если не миллионов людей.

Условие задачи

Условие:

Условие: нужно соединить нарисованные девять точек четырьмя прямыми линиями не отрывая ручки от листа бумаги.

Эта задача является не такой уж простой, как может показаться. Чтобы ее решить нужно думать нестандартно и применить свое творческое мышление , иначе ничего не получится. Если пытаться действовать в лоб начать соединять все точки стандартными линиями, то вы можете потратить уйму времени и так и не решить задачу девяти точек. Наше стандартное мышление, которому нас учат в школе, направляет нас искать решение, опираясь лишь на шесть типичных линий: 4 стороны квадрата и 2 его диагонали. Большинству людей кажется, что решение головоломки о 9 точках должно лежать именно в этих рамках. Но его там нет. Его даже не найти если подключить еще 2 линии между центрами сторон квадрата:

Вообще между всеми девятью точками можно провести всего 20 прямых линий: 4 стороны квадрата; 2 диагонали; 6 линий, соединяющих центры сторон большого квадрата; 8 линий соединяющих центры сторон большого квадрата с его углами. Как нарисовать все отрезки, соединяющие наши 9 точек, показано на рисунке ниже:

Но, даже используя эту схему, невозможно найти 4 линии, которыми можно было бы соединить все девять точек, не отрывая руки.

Верное решение «теста 9 точек»

Решение этой головоломки лежит несколько шире нашего стандартного восприятия задачи. Для того, чтобы самостоятельно найти верный подход вспомните, что:

  1. Через любые 2 точки можно провести только одну прямую линию.
  2. Прямая линия – это не отрезок и, следовательно, нам не обязательно ограничиваться при рисовании линий нашими девятью синими кружками.

Таким образом, давайте попробуем продолжить линии за пределы, ограничивающего нас до недавнего времени квадрата. Тут видно, что область нашего поиска значительно увеличилась. Потрудившись немного можно прийти к одному из правильных решений.

Последовательность соединений девяти точек четырьмя линиями:

  1. Для начала проведите линию, соединяющую точку №1 и точку №7, через точку №4. Не останавливайте движение и рисуйте дальше примерно столько, сколько от точки №4 до точки №7.
  2. Далее двигайтесь по диагонали направо-вверх, соединяя точки №8 и №6. Не останавливайтесь на точке №6 и продолжайте линию до мысленной прямой, проходящей через верхнюю сторону нашего квадрата.
  3. Нарисуйте линию справа налево последовательно через точки №3, №2 и №1. Остановитесь на точке №1.
  4. Теперь проведите финальный отрезок через точки №1, №5 и №9. Все 9 точек, и правда, соединены четырьмя линиями, как и требовалось в условии задачи.

Другие варианты. Этот способ не единственный, начинать можно от любого угла и двигаться одном из двух направлений. На сайте 4brain таких вариантов решения задачи «9 точек 4 линии» представлено минимум 12:

Только подумайте, задача, которую многие никак не могут решить, имеет 12 способов решения. Также смотрите упрощенный вариант этой задачи : как соединить 4 точки тремя линиями, чтобы линии замыкались в целую фигуру.

Творческий подход в этой головоломке

Большинство людей, которые решали эту задачу, так и не смогли выбраться за рамки стандартного мышления, которое в данном тесте выражено квадратом, образованным девятью точками. Нам комфортно смотреть на любую жизненную задачу прямо, наиболее просто. С другой стороны, человек может потратить много времени и сил для того, чтобы, используя стандартный подход, найти верное решение, когда это решение лучше искать, изначально подойдя к процессу творчески.

В нашей жизни мы часто сталкиваемся с такими задачами о «девяти точках и четырех линиях», и для того, чтобы их решать развивайте свое креативное мышление , в том числе и при помощи нашего тренинга . Ведь задача о 9 точках имеет и другие решения (об этом читайте дальше).

Другие способы решения

Изменив наш фрейм или применив латеральный разрыв можно найти и другие варианты решения этой задачи. Например, метод гиперболизации при создании латерального разрыва может нас привести к мысли, что никто не уточняет, что в задаче должны применяться стандартные условия геометрии (о бесконечной малости точек и бесконечной тонкости линий). Пусть наша линия будет настолько широкой, что сможет сразу пересекать несколько точек по своей ширине. Тогда мы не то что 4-мя линиями сможем соединить все 9 точек, а даже одной.

Кроме того, даже в нашем изображении 4-х точек, которое дано в нашем условии головоломки о 9 точках, сами точки-кружки достаточно большие, чтобы можно было их соединить 3-мя линиями вот так:

А может вообще не стоит ограничиваться двухмерным пространством или использовать концепцию искривления пространства. Также мы можем акцентировать внимание на фразу «не отрывая ручки от листа бумаги», и просто положив ручку на бок передвинуть ее и таким образом нарисовать просто 3 параллельных линии.

© 2024 skudelnica.ru -- Любовь, измена, психология, развод, чувства, ссоры