Принцип действия синхрофазотрона. Синхрофазотрон - что это: определение, принцип действия, применение

Главная / Любовь

Весь мир знает, что в 1957 году СССР запустил первый в мире искусственный спутник Земли. Однако, мало кто знает, что в этом же году Советский Союз начал испытания синхрофазотрона, который является прародителем современного Большого Адронного Коллайдера в Женеве. В статье пойдет речь о том, что такое синхрофазотрон, и как он работает.

Отвечая на вопрос, что такое синхрофазотрон, следует сказать, что это высокотехнологическое и наукоемкое устройство, которое предназначалось для исследования микрокосмоса. В частности, идея синхрофазотрона состояла в следующем: необходимо было с помощью мощных магнитных полей, создаваемых электромагнитами, разогнать до больших скоростей пучок элементарных частиц (протонов), а затем направить этот пучок на находящуюся в покое мишень. От такого столкновения протоны должны будут «разломаться» на части. Недалеко от мишени находится специальный детектор — пузырьковая камера. Этот детектор позволяет по трекам, которые оставляют части протона, исследовать их природу и свойства.

Для чего нужно было строить синхрофазотрон СССР? В этом научном эксперименте, который проходил под категорией «совершенно секретно», советские ученые пытались найти новый источник более дешевой и более эффективной энергии, чем обогащенный уран. Также преследовались и чисто научные цели более глубокого изучения природы ядерных взаимодействий и мира субатомных частиц.

Принцип работы синхрофазотрона

Приведенное выше описание задач, которые стояли перед синхрофазотроном, может многим показаться не слишком сложным для их реализации на практике, но это не так. Несмотря на всю простоту вопроса, что такое синхрофазотрон, чтобы ускорить протоны до необходимых огромных скоростей, нужны электрические напряжения в сотни млрд вольт. Такие напряжения невозможно создать даже в настоящее время. Поэтому было решено распределить во времени вкачиваемую в протоны энергию.

Принцип работы синхрофазотрона заключался в следующем: пучок протонов начинает свое движение по кольцеобразному туннелю, в некотором месте этого туннеля стоят конденсаторы, которые создают скачек напряжения в тот момент, когда пучок протонов пролетает через них. Таким образом, на каждом витке происходит небольшое ускорение протонов. После того, как пучок частиц совершит несколько миллионов оборотов по туннелю синхрофазотрона, протоны достигнут желаемых скоростей, и будут направлены на мишень.

Стоит отметить, что используемые во время ускорения протонов электромагниты выполняли направляющую роль, то есть они определяли траекторию пучка, но не участвовали в его ускорении.

Проблемы, с которыми столкнулись ученые при проведении экспериментов

Чтобы лучше понять, что такое синхрофазотрон, и почему его создание является очень сложным и наукоемким процессом, следует рассмотреть проблемы, возникающие в процессе его работы.

Во-первых, чем больше скорость пучка протонов, тем большей массой они начинают обладать согласно знаменитому закону Эйнштейна. При скоростях близких к световым масса частиц становится настолько большой, что для их удержания на нужной траектории, необходимо иметь мощные электромагниты. Чем больше размер синхрофазотрона, тем большие магниты можно поставить.

Во-вторых, создание синхрофазотрона осложнялось еще и потерями энергии пучком протонов во время их кругового ускорения, причем, чем больше скорость пучка, тем более значительными становятся эти потери. Получается, что для разгона пучка до необходимых гигантских скоростей, необходимо иметь огромные мощности.

Какие результаты удалось получить?

Несомненно, эксперименты на советском синхрофазотроне внесли огромный вклад в развитие современных областей техники. Так, благодаря этим экспериментам ученые СССР смогли улучшить процесс переработки использованного урана-238 и получили некоторые интересные данные, сталкивая ускоренные ионы разных атомов с мишенью.

Результаты экспериментов на синхрофазотроне используются и по сей день в строительстве атомных электростанций, космических ракет и робототехники. Достижения советской научной мысли были использованы при строительстве самого мощного синхрофазотрона современности, которым является Большой Адронный Коллайдер. Сам же советский ускоритель служит науке РФ, находясь в институте ФИАН (Москва), где используется в качестве ускорителя ионов.

Что такое синхрофазотрон: принцип работы и полученные результаты — все о путешествиях на сайт

Что такое синхрофазотрон?

Для начала немного углубимся в историю. Потребность в данном устройстве впервые возникла в 1938 году. Группа ученых-физиков Ленинградского ФТИ обратилась к Молотову с заявлением, что СССР нужна исследовательская база для изучения строения атомного ядра. Аргументировали данную просьбу тем, что подобная область изучения играет очень важную роль, а на данный момент Советский Союз несколько отстает от западных коллег. Ведь в Америке на то время уже имелось 5 синхрофазотронов, в СССР же ни одного. Было предложено завершить постройку уже начатого циклотрона, развитие которого приостановилось из-за слабого финансирования и отсутствия компетентных кадров.

В конце концов, было принято решение о строительстве синхрофазотрона, и во главе сего проекта стоял Векслер. Строительство было завершено в 1957 году. Так что же такое синхрофазотрон? Попросту говоря, – это ускоритель частиц. Он предает частицам огромной кинетической энергии. В его основе лежит переменчивое ведущее магнитное поле и изменяемая частота главного поля. Такое сочетание позволяет удерживать частицы на постоянной орбите. Используется это устройство для изучения разнообразнейших свойств частиц и их взаимодействия на высоких энергетических уровнях.

Аппарат имеет очень интригующие габариты: он занимает целый корпус университета, его вес равен 36 тыс. тонн, а диаметр магнитного кольца – 60 м. Довольно внушительные размеры для устройства, основной задачей которого является изучение частиц, размеры которых измеряются в микрометрах.

Принцип работы синхрофазотрона

Очень многие ученые физики пытались разработать устройство, которое давало бы возможность разгонять частицы, предавая им огромной энергии. Именно решением этой проблемы и является синхрофазотрон. Как же он работает и что лежит в основе?

Начало было положено циклотроном. Рассмотрим принцип его действия. Ионы, которые будут ускорять, попадают в вакуум, где находится дуант. В это время на ионы происходит воздействие магнитным полем: они продолжают двигаться по оси, набирая скорость. Преодолев ось и попав в следующий зазор, начинается набор ими скорости. Для большего ускорения требуется постоянный прирост радиуса дуги. При этом время прохождения будет постоянным, не смотря на увеличение расстояния. Из-за роста скорости наблюдается прирост массы ионов.

Такое явление влечет за собой потерю в наборе скорости. Это и есть основной недостаток циклотрона. В синхрофазотроне данная проблема полностью устранена – за счет изменения индукции магнитного поля с привязанной массой и одновременного изменения частоты перезарядки частиц. То есть, энергия частиц наращивается за счет электрического поля, задавая направление за счет наличия магнитного поля.

По своей сути синхрофазотрон представляет собой огромную установку для ускорения заряженных частиц. Скорости элементов в этом устройстве очень велики, как и выделяемая при этом энергия. Получая картину взаимного соударения частиц, ученые могут судить о свойствах материального мира и его строении.

О необходимости создания ускорителя говорилось еще до начала Великой Отечественной войны, когда группа советских физиков во главе с академиком А. Иоффе направила в правительство СССР письмо. В нем подчеркивалась важность создания технической базы для изучения строения ядра атома. Эти вопросы уже тогда стали центральной проблемой естествознания, их решение могло продвинуть вперед прикладную науку, военное дело и энергетику.

В 1949 году началось проектирование первой установки – протонного ускорителя. Это сооружение было к 1957 году построено в Дубне. Ускоритель протонов, получивший название «синхрофазотрон», представляет собой сооружение громадных размеров. Он сконструирован в виде отдельного корпуса научно-исследовательского института. Основную часть площади сооружения занимает магнитное кольцо диаметром около 60 м. Оно требуется для создания электромагнитного поля с требуемыми характеристиками. В пространстве магнита и происходит ускорение частиц.

Принцип работы синхрофазотрона

Первый мощный ускоритель-синхрофазотрон изначально предполагалось сконструировать на основе комбинации двух принципов, до этого по отдельности использовавшихся в фазотроне и синхротроне. Первый из принципов – изменение частоты электромагнитного поля, второй – изменение уровня напряженности магнитного поля.

Работает синхрофазотрон по принципу циклического ускорителя. Чтобы нахождение частицы на одной и той же равновесной орбите, частота ускоряющего поля меняется. Пучок частиц всегда приходит в ускорительную часть установки в фазе с электрическим полем высокой частоты. Синхрофазотрон иногда называют протонным синхротроном, имеющим слабую фокусировку. Важный параметр синхрофазотрона – интенсивность пучка, которая определяется числом содержащихся в нем частиц.

В синхрофазотроне почти полностью устраняются погрешности и недостатки, свойственные его предшественнику – циклотрону. Изменяя индукцию магнитного поля и частоту перезарядки частиц, протонный ускоритель увеличивает энергию частиц, направляя их по нужному курсу. Создание такого прибора произвело революцию в ядерной

Синхрофазотрон - циклический ускоритель с постоянной длиной равновесной орбиты. Чтобы частицы в процессе ускорения оставались на той же орбите, изменяется как ведущее магнитное поле , так и частота ускоряющего электрического поля . Большинство современных циклических ускорителей являются сильнофокусирующими синхрофазотронами. Для ультрарелятивистских электронов в процессе ускорения частота обращения практически не меняется, и используются синхротроны.

Из истории

Волею судьбы в 1921 году он оказывается беспризорником в Москве и попадает в дом-коммуну в Хамовниках. Окончив в коммуне школу-девятилетку, стал работать на заводе электриком, где получил комсомольскую путевку в институт. В 1931 году окончил экстерном Московский энергетический институт и стал работать в лаборатории рентгеноструктурного анализа Всесоюзного электротехнического института в Лефортове, где занимался постройкой измерительных приборов и изучением методов измерения потоков заряженных частиц.

В 1937 г. Векслер перешел в Физический институт Академии наук СССР имени П.Н. Лебедева (ФИАН), где занялся изучением космических лучей. С их помощью физики изучали превращения химических элементов и изучали процессы ядерных взаимодействий. Векслер участвовал в экспедициях ученых на Эльбрус, а затем, позже, на Памир, где и отлавливались потоки заряженных частиц высокой энергии, которые невозможно было получить в земных лабораториях.

Уже в двадцатых годах у многих ученых-ядерщиков возникала мысль - как хорошо было бы получить частицы Э.Лоуренс таких высоких “космических” энергий в лаборатории с помощью надежных приборов. Теоретически всё было ясно - заряженную частицу должно разгонять электрическое поле. Однако линейные ускорители не позволяли получить частицы больших энергий. В 1929 году американский ученый Э. Лоуренс предложил конструкцию ускорителя, в котором частица движется по спирали, проходя многократно один и тот же промежуток между двумя электродами. Траекторию частицы искривляет и закручивает однородное магнитное поле, направленное перпендикулярно плоскости орбиты. Ускоритель был назван циклотроном. В 1930-1931 годах Лоуренс с сотрудниками построил в Калифорнийском университете (США) первый циклотрон. За это изобретение он в 1939 году был удостоен Нобелевской премии.

С 1938 г. Векслер подключился к созданию циклоторонов в нашей стране. Но и у них оказался предел ускорения частиц. Требовались новые усовершенствования. Работы прервала война, и Векслер во время эвакуации в Казани совместно с другими учёными занимался исследованиями, непосредственно необходимыми фронту. Только в 1943 году Векслеру удалось вернуться к проблемам ускорителей. Трудность заключалась в том, что в соответствии с теорией относительности Эйнштейна с увеличением скорости росла и масса частиц, они отклонялись от круговой траектории и гасились о стенки циклотрона.

В феврале 1944 года В.И. Векслер выдвинул революционную идею, как преодолеть энергетический барьер циклотрона. Он назвал свой метод автофазировкой. Векслер предложил синхронно увеличивать во времени магнитное поле в циклотроне, питая магнит переменным током в фазе с частотой обращения частиц. Тогда окажется, что в среднем частота обращения частиц по окружности автоматически будет поддерживаться равной частоте разгоняющего электрического поля. Такой ускоритель был назван синхрофазотроном.

Через год независимо от Векслера принцип автофазировки открыл американский ученый Э. Макмиллан. Позднее они оба были представлены к присуждению за это Нобелевской премии. Но у нас все работы были засекречены и не были представлены в Нобелевский комитет. А одному Макмиллану премию не дали. Правда, в 1957 году он получил Нобелевскую премию по химии за другую работу.

В 1949 году по инициативе В. И. Векслера и С. И. Вавилова ученые и инженеры начали проектировать первый в нашей стране синхрофазотрон на 10 миллиардов электрон-вольт в Дубне. Пуск его в эксплуатацию состоялся в 1957 году. Векслер был бессменным директором Лаборатории высоких энергий Объединенного института ядерных исследований в Дубне.

© 2024 skudelnica.ru -- Любовь, измена, психология, развод, чувства, ссоры