Как решаются логарифмы примеры. Логарифмические выражения

Главная / Психология

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

В задаче B7 дается некоторое выражение, которое нужно упростить. В результате должно получиться обычное число, которое можно записать в бланке ответов. Все выражения условно делятся на три типа:

  1. Логарифмические,
  2. Показательные,
  3. Комбинированные.

Показательные и логарифмические выражения в чистом виде практически не встречаются. Однако знать, как они вычисляются, совершенно необходимо.

В целом, задача B7 решается достаточно просто и вполне под силу среднему выпускнику. Отсутствие четких алгоритмов компенсируется в ней стандартностью и однообразностью. Научиться решать такие задачи можно просто за счет большого количества тренировок.

Логарифмические выражения

Подавляющее большинство задач B7 содержат логарифмы в том или ином виде. Эта тема традиционно считается сложной, поскольку ее изучение приходится, как правило, на 11 класс — эпоху массовой подготовки к выпускным экзаменам. В результате многие выпускники имеют весьма смутное представление о логарифмах.

Но в этой задаче никто и не требует глубоких теоретических познаний. Нам будут встречаться лишь самые простые выражения, которые требуют незамысловатых рассуждений и вполне могут быть освоены самостоятельно. Ниже приведены основные формулы, которые надо знать, чтобы справиться с логарифмами:

Кроме того, надо уметь заменять корни и дроби на степени с рациональным показателем, иначе в некоторых выражениях выносить из под знака логарифма будет просто нечего. Формулы замены:

Задача. Найти значения выражений:
log 6 270 − log 6 7,5
log 5 775 − log 5 6,2

Первые два выражения преобразуются как разность логарифмов:
log 6 270 − log 6 7,5 = log 6 (270: 7,5) = log 6 36 = 2;
log 5 775 − log 5 6,2 = log 5 (775: 6,2) = log 5 125 = 3.

Для вычисления третьего выражения придется выделять степени — как в основании, так и в аргументе. Для начала найдем внутренний логарифм:

Затем — внешний:

Конструкции вида log a log b x многим кажутся сложными и непонятыми. А между тем, это всего лишь логарифм от логарифма, т.е. log a (log b x ). Сначала вычисляется внутренний логарифм (положим log b x = c ), а затем внешний: log a c .

Показательные выражения

Будем называть показательным выражением любую конструкцию вида a k , где числа a и k — произвольные постоянные, причем a > 0. Методы работы с такими выражениями достаточно просты и рассматриваются на уроках алгебры 8-го класса.

Ниже приведены основные формулы, которые обязательно надо знать. Применение этих формул на практике, как правило, не вызывает проблем.

  1. a n · a m = a n + m ;
  2. a n / a m = a n − m ;
  3. (a n ) m = a n · m ;
  4. (a · b ) n = a n · b n ;
  5. (a : b ) n = a n : b n .

Если встретилось сложное выражение со степенями, и не понятно, как к нему подступиться, используют универсальный прием — разложение на простые множители. В результате большие числа в основаниях степеней заменяются простыми и понятными элементами. Затем останется лишь применить указанные выше формулы — и задача будет решена.

Задача. Найти значения выражений: 7 9 · 3 11: 21 8 , 24 7: 3 6: 16 5 , 30 6: 6 5: 25 2 .

Решение. Разложим все основания степеней на простые множители:
7 9 · 3 11: 21 8 = 7 9 · 3 11: (7 · 3) 8 = 7 9 · 3 11: (7 8 · 3 8) = 7 9 · 3 11: 7 8: 3 8 = 7 · 3 3 = 189.
24 7: 3 6: 16 5 = (3 · 2 3) 7: 3 6: (2 4) 5 = 3 7 · 2 21: 3 6: 2 20 = 3 · 2 = 6.
30 6: 6 5: 25 2 = (5 · 3 · 2) 6: (3 · 2) 5: (5 2) 2 = 5 6 · 3 6 · 2 6: 3 5: 2 5: 5 4 = 5 2 · 3 · 2 = 150.

Комбинированные задачи

Если знать формулы, то все показательные и логарифмические выражения решаются буквально в одну строчку. Однако в задаче B7 степени и логарифмы могут объединяться, образуя довольно неслабые комбинации.


Продолжаем изучать логарифмы. В этой статье мы поговорим про вычисление логарифмов , этот процесс называют логарифмированием . Сначала мы разберемся с вычислением логарифмов по определению. Дальше рассмотрим, как находятся значения логарифмов с использованием их свойств. После этого остановимся на вычислении логарифмов через изначально заданные значения других логарифмов. Наконец, научимся использовать таблицы логарифмов. Вся теория снабжена примерами с подробными решениями.

Навигация по странице.

Вычисление логарифмов по определению

В простейших случаях возможно достаточно быстро и легко выполнить нахождение логарифма по определению . Давайте подробно рассмотрим, как происходит этот процесс.

Его суть состоит в представлении числа b в виде a c , откуда по определению логарифма число c является значением логарифма. То есть, нахождению логарифма по определению отвечает следующая цепочка равенств: log a b=log a a c =c .

Итак, вычисление логарифма по определению сводится к нахождению такого числа c , что a c =b , а само число c есть искомое значение логарифма.

Учитывая информацию предыдущих абзацев, когда число под знаком логарифма задано некоторой степенью основания логарифма, то можно сразу указать, чему равен логарифм – он равен показателю степени. Покажем решения примеров.

Пример.

Найдите log 2 2 −3 , а также вычислите натуральный логарифм числа e 5,3 .

Решение.

Определение логарифма позволяет нам сразу сказать, что log 2 2 −3 =−3 . Действительно, число под знаком логарифма равно основанию 2 в −3 степени.

Аналогично находим второй логарифм: lne 5,3 =5,3 .

Ответ:

log 2 2 −3 =−3 и lne 5,3 =5,3 .

Если же число b под знаком логарифма не задано как степень основания логарифма, то нужно внимательно посмотреть, нельзя ли прийти к представлению числа b в виде a c . Часто такое представление бывает достаточно очевидно, особенно когда число под знаком логарифма равно основанию в степени 1 , или 2 , или 3 , ...

Пример.

Вычислите логарифмы log 5 25 , и .

Решение.

Несложно заметить, что 25=5 2 , это позволяет вычислять первый логарифм: log 5 25=log 5 5 2 =2 .

Переходим к вычислению второго логарифма . Число можно представить в виде степени числа 7 : (при необходимости смотрите ). Следовательно, .

Перепишем третий логарифм в следующем виде . Теперь можно увидеть, что , откуда заключаем, что . Следовательно, по определению логарифма .

Коротко решение можно было записать так: .

Ответ:

log 5 25=2 , и .

Когда под знаком логарифма находится достаточно большое натуральное число, то его не помешает разложить на простые множители. Это часто помогает представить такое число в виде некоторой степени основания логарифма, а значит, вычислить этот логарифм по определению.

Пример.

Найдите значение логарифма .

Решение.

Некоторые свойства логарифмов позволяют сразу указать значение логарифмов. К таким свойствам относятся свойство логарифма единицы и свойство логарифма числа, равного основанию: log 1 1=log a a 0 =0 и log a a=log a a 1 =1 . То есть, когда под знаком логарифма находится число 1 или число a , равное основанию логарифма, то в этих случаях логарифмы равны 0 и 1 соответственно.

Пример.

Чему равны логарифмы и lg10 ?

Решение.

Так как , то из определения логарифма следует .

Во втором примере число 10 под знаком логарифма совпадает с его основанием, поэтому десятичный логарифм десяти равен единице, то есть, lg10=lg10 1 =1 .

Ответ:

И lg10=1 .

Отметим, что вычисление логарифмов по определению (которое мы разобрали в предыдущем пункте) подразумевает использование равенства log a a p =p , которое является одним из свойств логарифмов.

На практике, когда число под знаком логарифма и основание логарифма легко представляются в виде степени некоторого числа, очень удобно использовать формулу , которая соответствует одному из свойств логарифмов. Рассмотрим пример нахождения логарифма, иллюстрирующий использование этой формулы.

Пример.

Вычислите логарифм .

Решение.

Ответ:

.

Не упомянутые выше свойства логарифмов также используются при вычислении, но об этом поговорим в следующих пунктах.

Нахождение логарифмов через другие известные логарифмы

Информация этого пункта продолжает тему использования свойств логарифмов при их вычислении. Но здесь основное отличие состоит в том, что свойства логарифмов используются для того, чтобы выразить исходный логарифм через другой логарифм, значение которого известно. Приведем пример для пояснения. Допустим, мы знаем, что log 2 3≈1,584963 , тогда мы можем найти, например, log 2 6 , выполнив небольшое преобразование с помощью свойств логарифма: log 2 6=log 2 (2·3)=log 2 2+log 2 3≈ 1+1,584963=2,584963 .

В приведенном примере нам было достаточно использовать свойство логарифма произведения. Однако намного чаще приходится применять более широкий арсенал свойств логарифмов, чтобы вычислить исходный логарифм через заданные.

Пример.

Вычислите логарифм 27 по основанию 60 , если известно, что log 60 2=a и log 60 5=b .

Решение.

Итак, нам нужно найти log 60 27 . Несложно заметить, что 27=3 3 , и исходный логарифм в силу свойства логарифма степени можно переписать как 3·log 60 3 .

Теперь посмотрим, как log 60 3 выразить через известные логарифмы. Свойство логарифма числа, равного основанию, позволяет записать равенство log 60 60=1 . С другой стороны log 60 60=log60(2 2 ·3·5)= log 60 2 2 +log 60 3+log 60 5= 2·log 60 2+log 60 3+log 60 5 . Таким образом, 2·log 60 2+log 60 3+log 60 5=1 . Следовательно, log 60 3=1−2·log 60 2−log 60 5=1−2·a−b .

Наконец, вычисляем исходный логарифм: log 60 27=3·log 60 3= 3·(1−2·a−b)=3−6·a−3·b .

Ответ:

log 60 27=3·(1−2·a−b)=3−6·a−3·b .

Отдельно стоит сказать о значении формулы перехода к новому основанию логарифма вида . Она позволяет от логарифмов с любыми основаниями переходить к логарифмам с конкретным основанием, значения которых известны или есть возможность их отыскать. Обычно от исходного логарифма по формуле перехода переходят к логарифмам по одному из оснований 2 , e или 10 , так как по этим основаниям существуют таблицы логарифмов, позволяющие с определенной степенью точности вычислять их значения. В следующем пункте мы покажем, как это делается.

Таблицы логарифмов, их использование

Для приближенного вычисления значений логарифмов могут быть использованы таблицы логарифмов . Наиболее часто используется таблица логарифмов по основанию 2 , таблица натуральных логарифмов и таблица десятичных логарифмов. При работе в десятичной системе счисления удобно пользоваться таблицей логарифмов по основанию десять. С ее помощью и будем учиться находить значения логарифмов.










Представленная таблица позволяет с точностью до одной десятитысячной находить значения десятичных логарифмов чисел от 1,000 до 9,999 (с тремя знаками после запятой). Принцип нахождения значения логарифма с помощью таблицы десятичных логарифмов разберем на конкретном примере – так понятнее. Найдем lg1,256 .

В левом столбце таблицы десятичных логарифмов находим две первые цифры числа 1,256 , то есть, находим 1,2 (это число для наглядности обведено синей линией). Третью цифру числа 1,256 (цифру 5 ) находим в первой или последней строке слева от двойной линии (это число обведено красной линией). Четвертую цифру исходного числа 1,256 (цифру 6 ) находим в первой или последней строке справа от двойной линии (это число обведено зеленой линией). Теперь находим числа в ячейках таблицы логарифмов на пересечении отмеченной строки и отмеченных столбцов (эти числа выделены оранжевым цветом). Сумма отмеченных чисел дает искомое значение десятичного логарифма с точностью до четвертого знака после запятой, то есть, lg1,236≈0,0969+0,0021=0,0990 .

А можно ли, используя приведенную таблицу, находить значения десятичных логарифмов чисел, имеющих больше трех цифр после запятой, а также выходящих за пределы от 1 до 9,999 ? Да, можно. Покажем, как это делается, на примере.

Вычислим lg102,76332 . Сначала нужно записать число в стандартном виде : 102,76332=1,0276332·10 2 . После этого мантиссу следует округлить до третьего знака после запятой, имеем 1,0276332·10 2 ≈1,028·10 2 , при этом исходный десятичный логарифм приближенно равен логарифму полученного числа, то есть, принимаем lg102,76332≈lg1,028·10 2 . Теперь применяем свойства логарифма: lg1,028·10 2 =lg1,028+lg10 2 =lg1,028+2 . Наконец, находим значение логарифма lg1,028 по таблице десятичных логарифмов lg1,028≈0,0086+0,0034=0,012 . В итоге весь процесс вычисления логарифма выглядит так: lg102,76332=lg1,0276332·10 2 ≈lg1,028·10 2 = lg1,028+lg10 2 =lg1,028+2≈0,012+2=2,012 .

В заключение стоит отметить, что используя таблицу десятичных логарифмов можно вычислить приближенное значение любого логарифма. Для этого достаточно с помощью формулы перехода перейти к десятичным логарифмам, найти их значения по таблице, и выполнить оставшиеся вычисления.

Для примера вычислим log 2 3 . По формуле перехода к новому основанию логарифма имеем . Из таблицы десятичных логарифмов находим lg3≈0,4771 и lg2≈0,3010 . Таким образом, .

Список литературы.

  • Колмогоров А.Н., Абрамов А.М., Дудницын Ю.П. и др. Алгебра и начала анализа: Учебник для 10 - 11 классов общеобразовательных учреждений.
  • Гусев В.А., Мордкович А.Г. Математика (пособие для поступающих в техникумы).

Задания, решение которых заключается в преобразовании логарифмических выражений , довольно часто встречаются на ЕГЭ.

Чтобы успешно справиться с ними при минимальной затрате времени кроме основных логарифмических тождеств, необходимо знать и правильно использовать ещё некоторые формулы.

Это: a log а b = b, где а, b > 0, а ≠ 1 (Она вытекает непосредственно из определения логарифма).

log a b = log с b / log с а или log а b = 1/log b а
где а, b, с > 0; а, с ≠ 1.

log а m b n = (m/n) log |а| |b|
где а, b > 0, а ≠ 1, m, n Є R, n ≠ 0.

а log с b = b log с а
где а, b, с > 0 и а, b, с ≠ 1

Чтобы показать справедливость четвертого равенства прологарифмируем левую и правую часть по основанию а. Получим log а (а log с b) = log а (b log с а) или log с b = log с а · log а b; log с b = log с а · (log с b / log с а); log с b = log с b.

Мы доказали равенство логарифмов, значит, равны и выражения, стоящие под логарифмами. Формула 4 доказана.

Пример 1.

Вычислите 81 log 27 5 log 5 4 .

Решение.

81 = 3 4 , 27 = 3 3 .

log 27 5 = 1/3 log 3 5, log 5 4 = log 3 4 / log 3 5. Следовательно,

log 27 5 · log 5 4 = 1/3 log 3 5 · (log 3 4 / log 3 5) = 1/3 log 3 4.

Тогда 81 log 27 5 log 5 4 = (3 4) 1/3 log 3 4 = (3 log 3 4) 4/3 = (4) 4/3 = 4 3 √4.

Самостоятельно можно выполнить следующее задание.

Вычислить (8 log 2 3 + 3 1/ log 2 3) - log 0,2 5.

В качестве подсказки 0,2 = 1/5 = 5 -1 ; log 0,2 5 = -1.

Ответ: 5.

Пример 2.

Вычислите (√11) log √3 9- log 121 81 .

Решение.

Выполним замену выражений: 9 = 3 2 , √3 = 3 1/2 , log √3 9 = 4,

121 = 11 2 , 81 = 3 4 , log 121 81 = 2 log 11 3 (использовалась формула 3).

Тогда (√11) log √3 9- log 121 81 = (11 1/2) 4-2 log 11 3 = (11) 2- log 11 3 = 11 2 / (11) log 11 3 = 11 2 / (11 log 11 3) = 121/3.

Пример 3.

Вычислите log 2 24/ log 96 2- log 2 192 / log 12 2.

Решение.

Логарифмы, содержащиеся в примере, заменим логарифмами с основанием 2.

log 96 2 = 1/log 2 96 = 1/log 2 (2 5 · 3) = 1/(log 2 2 5 + log 2 3) = 1/(5 + log 2 3);

log 2 192 = log 2 (2 6 · 3) = (log 2 2 6 + log 2 3) = (6 + log 2 3);

log 2 24 = log 2 (2 3 · 3) = (log 2 2 3 + log 2 3) = (3 + log 2 3);

log 12 2 = 1/log 2 12 = 1/log 2 (2 2 · 3) = 1/(log 2 2 2 + log 2 3) = 1/(2 + log 2 3).

Тогда log 2 24 / log 96 2 – log 2 192 / log 12 2 = (3 + log 2 3) / (1/(5 + log 2 3)) – ((6 + log 2 3) / (1/(2 + log 2 3)) =

= (3 + log 2 3) · (5 + log 2 3) – (6 + log 2 3)(2 + log 2 3).

После раскрытия скобок и приведения подобных слагаемых получим число 3. (При упрощении выражения можно log 2 3 обозначить через n и упрощать выражение

(3 + n) · (5 + n) – (6 + n)(2 + n)).

Ответ: 3.

Самостоятельно можно выполнить следующее задание:

Вычислить (log 3 4 + log 4 3 + 2) · log 3 16 · log 2 144 3 .

Здесь необходимо сделать переход к логарифмам по основанию 3 и разложение на простые множители больших чисел.

Ответ:1/2

Пример 4.

Даны три числа А = 1/(log 3 0,5), В = 1/(log 0,5 3), С = log 0,5 12 – log 0,5 3. Расположите их в порядке возрастания.

Решение.

Преобразуем числа А = 1/(log 3 0,5) = log 0,5 3; С = log 0,5 12 – log 0,5 3 = log 0,5 12/3 = log 0,5 4 = -2.

Сравним их

log 0,5 3 > log 0,5 4 = -2 и log 0,5 3 < -1 = log 0,5 2, так как функция у = log 0,5 х – убывающая.

Или -2 < log 0,5 3 < -1. Тогда -1 < 1/(log 0,5 3) < -1/2.

Ответ. Следовательно, порядок размещения чисел: С; А; В.

Пример 5.

Сколько целых чисел расположено на интервале (log 3 1 / 16 ; log 2 6 48).

Решение.

Определим между какими степенями числа 3 находится число 1 / 16 . Получим 1 / 27 < 1 / 16 < 1 / 9 .

Так как функция у = log 3 х – возрастающая, то log 3 (1 / 27) < log 3 (1 / 16) < log 3 (1 / 9); -3 < log 3 (1 / 16) < -2.

log 6 48 = log 6 (36 · 4 / 3) = log 6 36 + log 6 (4 / 3) = 2 + log 6 (4 / 3). Сравним log 6 (4 / 3) и 1 / 5 . А для этого сравним числа 4 / 3 и 6 1/5 . Возведём оба числа в 5 степень. Получим (4 / 3) 5 = 1024 / 243 = 4 52 / 243 < 6. Следовательно,

log 6 (4 / 3) < 1 / 5 . 2 < log 6 48 < 2 1 / 5 . Числа, входящие в двойное неравенство, положительные. Их можно возводить в квадрат. Знаки неравенства при этом не изменятся. Тогда 4 < log 6 2 48 < 4 21 / 25.

Следовательно, интервал (log 3 1 / 16 ; log 6 48) включает в себя промежуток [-2; 4] и на нём размещаются целые числа -2; -1; 0; 1; 2; 3; 4.

Ответ: 7 целых чисел.

Пример 6.

Вычислите 3 lglg 2/ lg 3 - lg20.

Решение.

3 lg lg 2/ lg 3 = (3 1/ lg3) lg lg 2 = (3 lо g 3 10) lg lg 2 = 10 lg lg 2 = lg2.

Тогда 3 lglg2/lg3 - lg 20 = lg 2 – lg 20 = lg 0,1 = -1.

Ответ: -1.

Пример 7.

Известно, что log 2 (√3 + 1) + log 2 (√6 – 2) = А. Найдите log 2 (√3 –1) + log 2 (√6 + 2).

Решение.

Числа (√3 + 1) и (√3 – 1); (√6 – 2) и (√6 + 2) – сопряжённые.

Проведем следующее преобразование выражений

√3 – 1 = (√3 – 1) · (√3 + 1)) / (√3 + 1) = 2/(√3 + 1);

√6 + 2 = (√6 + 2) · (√6 – 2)) / (√6 – 2) = 2/(√6 – 2).

Тогда log 2 (√3 – 1) + log 2 (√6 + 2) = log 2 (2/(√3 + 1)) + log 2 (2/(√6 – 2)) =

Log 2 2 – log 2 (√3 + 1) + log 2 2 – log 2 (√6 – 2) = 1 – log 2 (√3 + 1) + 1 – log 2 (√6 – 2) =

2 – log 2 (√3 + 1) – log 2 (√6 – 2) = 2 – А.

Ответ: 2 – А.

Пример 8 .

Упростите и найдите приближенное значение выражения (log 3 2 · log 4 3 · log 5 4 · log 6 5 · … · log 10 9.

Решение.

Все логарифмы приведём к общему основанию 10.

(log 3 2 · log 4 3 · log 5 4 · log 6 5 · … · log 10 9 = (lg 2 / lg 3) · (lg 3 / lg 4)· (lg 4 / lg 5) · (lg 5 / lg 6) · … · (lg 8 / lg 9) · lg 9 = lg 2 ≈ 0,3010. (Приближенное значение lg 2 можно найти с использованием таблицы, логарифмической линейки либо калькулятора).

Ответ: 0,3010.

Пример 9 .

Вычислить log а 2 b 3 √(a 11 b -3), если log √ а b 3 = 1. (В этом примере, а 2 b 3 – основание логарифма).

Решение.

Если log √ а b 3 = 1, то 3/(0,5 log а b = 1. И log а b = 1/6.

Тогда log а 2 b 3√(a 11 b -3) = 1/2 log а 2 b 3 (a 11 b -3) = log а (a 11 b -3) / (2log а (a 2 b 3)) = (log а a 11 + log а b -3) / (2(log а a 2 + log а b 3)) = (11 – 3log а b) / (2(2 + 3log а b)) Учитывая то, что log а b = 1/6 получим (11 – 3 · 1 / 6) / (2(2 + 3 · 1 / 6)) = 10,5/5 = 2,1.

Ответ: 2,1.

Самостоятельно можно выполнить следующее задание:

Вычислить log √3 6 √2,1, если log 0,7 27 = а.

Ответ: (3 + а) / (3а).

Пример 10.

Вычислить 6,5 4/ log 3 169 · 3 1/ log 4 13 + log125.

Решение.

6,5 4/ log 3 169 · 3 1/ log 4 13 + log 125 = (13/2) 4/2 log 3 13 · 3 2/ log 2 13 + 2log 5 5 3 = (13/2) 2 log 13 3 · 3 2 log 13 2 + 6 = (13 log 13 3 / 2 log 13 3) 2 · (3 log 13 2) 2 + 6 = (3/2 log 13 3) 2 · (3 log 13 2) 2 + 6 = (3 2 /(2 log 13 3) 2) · (2 log 13 3) 2 + 6.

(2 log 13 3 = 3 log 13 2 (формула 4))

Получим 9 + 6 = 15.

Ответ: 15.

Остались вопросы? Не знаете, как найти значение логарифмического выражения?
Чтобы получить помощь репетитора – .
Первый урок – бесплатно!

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Сегодня мы поговорим о формулах логарифмов и дадим показательные примеры решения .

Сами по себе подразумевают шаблоны решения согласно основным свойствам логарифмов. Прежде применять формулы логарифмов для решения напомним для вас, сначала все свойства:

Теперь на основе этих формул(свойств), покажем примеры решения логарифмов .

Примеры решения логарифмов на основании формул.

Логарифм положительного числа b по основанию a (обозначается log a b) - это показатель степени, в которую надо возвести a, чтобы получить b, при этом b > 0, a > 0, а 1.

Согласно определения log a b = x, что равносильно a x = b, поэтому log a a x = x.

Логарифмы , примеры:

log 2 8 = 3, т.к. 2 3 = 8

log 7 49 = 2, т.к. 7 2 = 49

log 5 1/5 = -1, т.к. 5 -1 = 1/5

Десятичный логарифм - это обычный логарифм, в основании которого находится 10. Обозначается как lg.

log 10 100 = 2, т.к. 10 2 = 100

Натуральный логарифм - также обычный логарифм логарифм, но уже с основанием е (е = 2,71828... - иррациональное число). Обозначается как ln.

Формулы или свойства логарифмов желательно запомнить, потому что они понадобятся нам в дальнейшем при решении логарифмов, логарифмических уравнений и неравенств. Давайте еще раз отработаем каждую формулу на примерах.

  • Основное логарифмическое тождество
    a log a b = b

    8 2log 8 3 = (8 2log 8 3) 2 = 3 2 = 9

  • Логарифм произведения равен сумме логарифмов
    log a (bc) = log a b + log a c

    log 3 8,1 + log 3 10 = log 3 (8,1*10) = log 3 81 = 4

  • Логарифм частного равен разности логарифмов
    log a (b/c) = log a b - log a c

    9 log 5 50 /9 log 5 2 = 9 log 5 50- log 5 2 = 9 log 5 25 = 9 2 = 81

  • Свойства степени логарифмируемого числа и основания логарифма

    Показатель степени логарифмируемого числа log a b m = mlog a b

    Показатель степени основания логарифма log a n b =1/n*log a b

    log a n b m = m/n*log a b,

    если m = n, получим log a n b n = log a b

    log 4 9 = log 2 2 3 2 = log 2 3

  • Переход к новому основанию
    log a b = log c b/log c a,

    если c = b, получим log b b = 1

    тогда log a b = 1/log b a

    log 0,8 3*log 3 1,25 = log 0,8 3*log 0,8 1,25/log 0,8 3 = log 0,8 1,25 = log 4/5 5/4 = -1

Как видите, формулы логарифмов не так сложны как кажутся. Теперь рассмотрев примеры решения логарифмов мы можем переходить к логарифмическим уравнениям. Примеры решения логарифмических уравнений мы более подробно рассмотрим в статье: " ". Не пропустите!

Если у вас остались вопросы по решению, пишите их в комментариях к статье.

Заметка: решили получить образование другого класса обучение за рубежом как вариант развития событий.

© 2024 skudelnica.ru -- Любовь, измена, психология, развод, чувства, ссоры