Сахаристые гидролизаты крахмала. Физическая модель осахаривания в производстве спирта

Главная / Психология

Гидролиз углеводов . Во многих пищевых производствах имеет место гидролиз пищевых гликозидов, олигосахаридов и полисахаридов. Гидролиз зависит от многих факторов: рН, температуры, аномерной конфигурации, комплекса ферментов. Он важен не только для процессов получения пищевых продуктов, но также и для процессов их хранения. В последнем случае реакции гидролиза могут приводить к нежелательным изменениям цвета или, в случае полисахаридов, могут приводить к неспособности их образовывать гели.

Большое внимание сейчас уделяется получению различных зерновых сахарных сиропов из дешевого крахмалсодержащего сырья и крахмала (рожь, кукуруза, сорго и др.). Их получение сводится к использованию разных комбинаций амилолитических ферментных препаратов (a-амилазы, глюкоамилазы, b-амилазы). Получение глюкозы (с помощью глюкоамилазы), а затем действие глюкозоизомеразы дает возможность получения глюкозофруктозных и высокофруктозных сиропов, применение которых позволяет заменять во многих производствах сахарозу.

При получении сахарных сиропов из крахмала степень конверсии крахмала в D-глюкозу измеряют в единицах глюкозного эквивалента (ГЭ) - это содержание (в %) образующихся редуцирующих сахаров, выраженное в глюкозе на сухие вещества (СВ) сиропа.

Таблица 10.Состав и сладость типичных высокофруктозных сиропов

Гидролиз крахмала.

1. При гидролизе крахмала под действием кислот сначала имеет место ослабление и разрыв ассоциативных связей между макромолекулами амилозы и амилопектина. Это сопровождается нарушением структуры крахмальных зерен и образованием гомогенной массы. Далее идет разрыв a-D-(l,4)- и a-D-(1,6)-связей с присоединением по месту разрыва молекулы воды. В процессе гидролиза нарастает число свободных альдегидных групп, уменьшается степень полимеризации. По мере гидролиза и нарастания редуцирующих (восстанавливающих) веществ содержание декстринов уменьшается, глюкозы - увеличивается, концентрация мальтозы, три- и тетрасахаров сначала увеличивается, затем их количество снижается (рис. 11). Конечным продуктом гидролиза является глюкоза. На промежуточных стадиях образуются декстрины, три- и тетрасахара, мальтоза. Определенному значению глюкозного эквивалента соответствует определенное соотношение этих продуктов, и, варьируя длительностью гидролиза и условиями его проведения, можно получать различные соотношения отдельных продуктов гидролиза при той или иной величине глюкозного эквивалента.

Рис. 11. Изменение содержания сахаров при кислотном гидролизе крахмала

Кислотный гидролиз долгое время был главным при получении глюкозы из крахмала. Этот способ имеет ряд существенных недостатков, которые связаны с использованием высоких концентраций кислот и высокой температуры, что приводит к образованию продуктов термической деградации и дегидратации углеводов и реакции трансгликозилирования.

2. Крахмал гидролизуется также и под действием амилолитических ферментов. К группе амилолитических ферментов относятся a- и b-амилаза, глюкоамилаза и некоторые другие ферменты. Амилазы бывают двух типов: эндо- и экзоамилазы .

Четко выраженной эндоамилазой является a-амилаза , способная к разрыву внутримолекулярных связей в высокополимерных цепях субстрата. Глюкоамилаза и b-амилаза являются экзоамилазами , т.е. ферментами, атакующими субстрат с нередуцирующего конца.

a-Амилаза , действуя на целое крахмальное зерно, атакует его, разрыхляя поверхность и образуя каналы и бороздки, то есть как бы раскалывает зерно на части (рис. 12). Клейстеризованный крахмал гидролизуется ею с образованием не окрашиваемых иодом продуктов - в основном низкомолекулярных декстринов. Процесс гидролиза крахмала многостадийный. В результате воздействия a-амилазы на первых стадиях процесса в гидролизате накапливаются декстрины, затем появляются неокрашиваемые йодом тетра- и тримальтоза, которые очень медленно гидролизуются a-амилазой до ди- и моносахаридов.

Рис. 12.Гидролиз крахмала a-амилазой

Схему гидролиза крахмала (гликогена) a-амилазой можно представить так:

b-Амилаза является экзоамилазой, проявляющей сродство к предпоследней a-(1,4)-связи с нередуцирующего конца линейного участка амилозы или амилопектина (рис. 13). В отличие от a-амилазы, b-амилаза практически не гидролизует нативный крахмал; клейстеризованный крахмал гидролизуется до мальтозы в b-конфигурации. Схему можно записать следующим образом:

Ферментативный гидролиз крахмала присутствует во многих пищевых технологиях как один из необходимых процессов, обеспечивающих качество конечного продукта - в хлебопечении (процесс тестоприготовления и выпечки хлеба), производстве пива (получение пивного сусла, сушка солода), кваса (получение квасных хлебцев), спирта (подготовка сырья для брожения), различных сахаристых крахмалопродуктов (глюкозы, патоки, сахарных сиропов).

3. Кислотно-ферментативный способ гидролиза включает предварительную обработку кислотой, а затем действием ферментов a-, b- и (или) глюкоамилазы. Использование такого комбинированного способа гидролиза крахмала открывает широкие возможности для получения сиропов заданного состава.

Гидролиз сахарозы. Поскольку сахароза как сырье используется во многих производствах, необходимо учитывать ее исключительную способность к гидролизу. Это может иметь место при нагревании в присутствии небольшого количества пищевых кислот. Образующиеся при этом редуцирующие сахара (глюкоза, фруктоза) могут участвовать в реакциях дегидратации, карамелизации и меланоидинообразования, образуя окрашенные и ароматические вещества. В ряде случаев это может быть нежелательно.

Ферментативный гидролиз сахарозы под действием b-фруктофуранозидазы (сахаразы, инвертазы) играет положительную роль в ряде пищевых технологий. При действии b-фруктофуранозидазы на сахарозу образуются глюкоза и фруктоза. Благодаря этому в кондитерских изделиях (в частности, в помадных конфетах) добавление b-фруктофуранозидазы предупреждает черствение конфет, в хлебопекарных изделиях - способствует улучшению аромата. Инверсия сахарозы под действием b-фруктофуранозидазы имеет место на начальной стадии производства виноградных вин. Инвертные сиропы, полученные действием b-фруктофуранозидазы на сахарозу, используются при производстве безалкогольных напитков.

Ферментативный гидролиз некрахмалистых полисахаридов. Этот гидролиз имеет место под действием ферментов целлюлолитического, гемицеллюлазного и пектолитического комплекса. Используется в пищевой технологии для более полной переработки сырья и улучшения качества продукции. Например, гидролиз некрахмалистых полисахаридов (пентозанов и др.) при солодоращении имеет значение в последующем для образования окрашенных и ароматических продуктов (при сушке солода и создании определенных органолептических свойств пива). В производстве соков и в виноделии - для осветления, увеличения выхода сока, улучшения условий фильтрации.

Гидролиз целлюлозы происходит под действием комплекса целлюлолитических ферментов. По современным представлениям гидролиз целлюлозы под действием ферментов целлюлолитического комплекса можно представить следующим образом:

Реакции дегидратации и термической деградации углеводов . При переработке пищевого сырья в пищевые продукты эти реакции занимают важное место. Они катализируются кислотами и щелочами, и многие из них идут по типу b-элиминации. Пентозы, как главный продукт дегидратации, дают фурфурол , гексозы - оксиметилфурфурол и другие продукты, такие как 2-гидроксиацетилфуран , изомальтол и мальтол . Фрагментация углеродных цепей этих продуктов дегидратации приводит к образованию муравьиной, молочной, уксусной кислот и ряда других соединений. Некоторые из образующихся продуктов обладают определенным запахом и могут поэтому сообщать пищевому продукту желательный или, наоборот, нежелательный аромат. Эти реакции требуют высокой температуры.

Реакции, которые имеют место при тепловой обработке cахаров, могут быть разделены на идущие без разрыва С-С-связей и на идущие с их разрывом. К первым относятся реакции аномеризации:

и внутренней альдозо-кетозной конверсии, например:

В сложных углеводах, таких как крахмал, в жестких условиях нагревания - пиролиз при высокой температуре (200 °С) - важное место занимают реакции трансгликозилирования. При этих условиях число (1,4)-a-b-связей уменьшается во времени, a (l,6)-a-D- и даже (1,2)-b-D-связи образуются.

При получении глюкозы кислотным гидролизом крахмала, который обычно проводят в сильнокислой среде при высокой температуре, могут образовываться изомальтоза и гентиобиоза . Протекание таких реакций является отрицательной характеристикой кислотного способа получения глюкозы.

При тепловой обработке некоторых пищевых продуктов могут образовываться в значительном количестве ангидросахара, особенно при обработке в сухом виде продуктов, содержащих D-глюкозу или полимеры на основе D-глюкозы.

Реакции с разрывом С-С-связей приводят к образованию летучих кислот, кетонов, дикетонов, фуранов, спиртов, ароматических веществ, оксида и диоксида углерода .

Реакции образования коричневых продуктов . Потемнение пищевых продуктов может иметь место в результате окислительных или неокислительных реакций. Окислительное или ферментативное потемнение - это реакция между фенольным субстратом и кислородом, катализируемая ферментом полифенолоксидазой. Это потемнение, имеющее место на срезах яблок, бананов, груш, не связано с углеводами.

Неокислительное или неферментативное потемнение представлено в пищевых продуктах очень широко. Оно связано с реакциями углеводов и включает явление карамелизации и взаимодействие углеводов с белками или аминами . Последнее известно как реакция Майяра.

Карамелизация. Прямой нагрев углеводов, особенно сахаров и сахарных сиропов, способствует протеканию комплекса реакций, называемых карамелизацией . Реакции катализируются небольшими концентрациями кислот, щелочей и некоторых солей. При этом образуются коричневые продукты с типичным карамельным ароматом. Регулируя условия, можно направить реакции в основном на получение аромата или же в сторону образования окрашенных продуктов. Умеренный (начальный) нагрев сахарных растворов приводит к аномерным изменениям, разрыву гликозидных связей, образованию новых гликозидных связей. Но основными являются реакция дегидратации с образованием ангидроколец. В результате образуются дигидрофураноны, циклопентанолоны, циклогексанолоны, пироны и др. Сопряженные двойные связи адсорбируют свет определенных длин волн, придавая продуктам коричневый цвет. Часто в ненасыщенных кольцевых системах может иметь место конденсация в полимерные кольцевые системы. Обычно для получения карамельного цвета и запаха используется сахароза. Нагреванием раствора сахарозы в присутствии серной кислоты или кислых солей аммония получают интенсивно окрашенные полимеры «сахарный колер » для применения в различных пищевых продуктах - при производстве напитков, карамели и др. Стабильность и растворимость этих полимеров увеличивается в присутствии НSО 3 -ионов:

Карамельные пигменты содержат различные группы - гидроксильные, кислотные, карбонильные, енольные, фенольные и др. Скорость реакции образования карамельных пигментов увеличивается при увеличении температуры и рН. В отсутствие буферных солей может образоваться полимерное соединение гумин с горьким вкусом (средняя формула C 125 H 188 O 90); при производстве пищевых продуктов с этим необходимо считаться и не допускать его образования.

Комплекс реакций, имеющих место при карамелизации, приводит к образованию разнообразных кольцевых систем с уникальным вкусом и ароматом. Так, мальтол и изомальтол имеют запах печеного хлеба, 2-Н-4-гидрокси-5-метилфуранон-3 - аромат жареного мяса. Кроме того, эти продукты имеют сладкий вкус, что также определяет их положительную роль в пищевых продуктах.

Реакция Майяра (меланоидинобразование). Реакция Майяра является первой стадией реакции неферментативного потемнения пищевых продуктов. Для протекания реакции требуется наличие редуцирующего сахара, аминного соединения (аминокислоты, белки) и немного воды.

Рис. 13.Схематическое изображение превращений при потемнении пищевых продуктов

Все процессы, происходящие при потемнении пищевых продуктов (рис. 13), еще недостаточно точно определены, но начальные стадии изучены очень детально. Установлено, что помимо реакции Майяра имеет место дегидратация с образованием оксиметилфурфурола, разрыв цепей, образование дикарбонильных соединений, образование меланоидиновых пигментов, которые образуются на конечных стадиях и имеют окраску от красно-коричневой до темно-коричневой. Если на первых стадиях возможна некоторая деколоризация при добавлении восстановителей (например, сульфита), то на конечном этапе это уже невозможно.

Если образование коричневых пигментов для пищевых продуктов нежелательно, можно ингибировать протекаемые реакции, например, значительным снижением влажности (для сухих продуктов), снижением концентрации сахара (разведением), рН и температуры (для жидких продуктов). Можно удалить один из компонентов субстрата (обычно, сахар). Например, при получении яичного порошка, чтобы не допустить появления запаха, перед сушкой добавляют глюкозооксидазу, что приводит к разрушению D-глюкозы и образованию D-глюконовой кислоты:

Кроме удаления сахара, образующийся при этом технологическом приеме пероксид водорода и повышение температуры приводят к снижению бактериальной обсемененности (см. табл. 3.8). Для предотвращения потемнения рыбы, содержащей значительные количества рибозы, добавляют бактерии, обладающие D-рибозооксидазной активностью.

Оксид серы (SO 2) и его производные подавляют реакцию потемнения в пищевых продуктах, однако их применение ограничивается возможностью образования в сульфитированных пищевых продуктах слаботоксичных компонентов. Поиски других ингибиторов продолжаются, однако найденные до настоящего времени заменители (цианиды, димедон, гидроксиламин, гидразин, меркаптаны, бромин ) неприемлемы из-за токсичности. Однако этот путь защиты от потемнения не предохраняет продукты от потери аминокислот (например, лизина), поскольку реакция с сульфит-ионами протекает на последних стадиях меланоидинообразования.

Окисление в альдоновые, дикарбоновые и уроновые кислоты . Способность альдоз к окислению также имеет значение для пищевых продуктов. При определенных условиях возможно окисление в альдоновые кислоты, причем b-форма окисляется быстрее, чем a-форма. Продуктом окисления является b-лактон, который находится в равновесии с g-лактоном и свободной формой альдоновой кислоты (рис. 14). Последняя форма превалирует при рН 3.

Рис.14. Окисление D-глюкозы

Глюконо-b-лактон может присутствовать в пищевых продуктах в умеренно кислой среде, когда имеет место медленная реакция, например, при получении некоторых молочных продуктов. При действии более сильных окислителей (например, азотной кислоты) образуются дикарбоновые кислоты.

Окисление в уроновые кислоты возможно только при защите карбонильной группы (рис. 15).

Рис. 15. Окисление D-галактозы в D-галактуроновую кислоту

Один из промышленных способов получения глюкуроновой кислоты - окисление при гидролизе крахмала - приведен на рис. 16.

Рис. 16. Один из промышленных способов получения глюкуроновой кислоты

Уроновые кислоты распространены в природе. Некоторые их них являются структурными компонентами полисахаридов, имеющих важное значение в пищевых процессах, таких как гелеобразование и загустевание -это пектин (D-галактуроновая кислота), альгиновая кислота из морских водорослей (D-маннуроновая кислота, a-гулуроно-вая кислота).

Окисление, катализируемое ферментами. Здесь прежде всего следует сказать об окислении глюкозы под воздействием глюкозооксидазы.

С точки зрения применения в пищевых технологиях представляет интерес система глюкозооксидаза - каталаза.

Глюкозооксидаза обладает исключительной специфичностью по отношению к глюкозе. Ее действие показано на схеме, приведенной на рис. 17.

Рис. 17. Действие глюкозооксидазы

Эта реакция является эффективным методом удаления кислорода из напитков (соков, пива), поскольку кислород участвует в образовании пероксидов и веществ, приводящих к изменению цвета и запаха продуктов. Применение глюкозооксидазы дает возможность ингибировать протекание реакции Майяра.

Процессы брожения . Брожение - процесс (в котором участвуют углеводы), используемый в ряде пищевых технологий: во время тестоприготовления при изготовлении хлеба, в производстве пива, кваса, спирта, вина и других продуктов.

Спиртовое брожение осуществляется благодаря жизнедеятельности ряда микроорганизмов. Наиболее типичными организмами спиртового брожения являются дрожжи рода Saccharomyces. Суммарно спиртовое брожение может быть выражено следующим уравнением:

Это суммарное уравнение не отражает того факта, что обычно, кроме главных продуктов брожения - этилового спирта и углекислого газа, всегда в незначительном количестве образуются некоторые другие вещества, например, янтарная, лимонная кислота, а также смесь амилового, изоамилового, бутилового и других спиртов, уксусная кислота, дикетоны, уксусный альдегид, глицерин и ряд других соединений, от наличия ничтожных количеств которых зависит специфический аромат вина, пива и других спиртных напитков.

Разные сахара сбраживаются дрожжами с различной скоростью. Наиболее легко подвергаются сбраживанию глюкоза и фруктоза, медленнее - манноза , еще медленнее - галактоза ; пентозы дрожжами не сбраживаются. Из дисахаридов хорошим субстратом спиртового брожения являются сахароза и мальтоза . Однако оба сахара сбраживаются лишь после предварительного гидролиза на составляющие их моносахариды ферментами a-гликозидазой.

В присутствии кислорода спиртовое брожение прекращается и дрожжи получают энергию, необходимую для их развития и жизнедеятельности, путем кислородного дыхания. При этом дрожжи тратят сахар значительно экономнее, чем в анаэробных условиях. Прекращение брожения под влиянием кислорода получило название «эффект Пастера ».

Другой вид брожения, важный для пищевых технологий, это молочнокислое брожение, при котором из одной молекулы гексозы образуются две молекулы молочной кислоты :

С 6 Н 12 О 6 = 2СН 3 -СНОН-СООН

Молочнокислое брожение играет очень большую роль при производстве молочнокислых продуктов (простокваши, ацидофилина, кефира, кумыса ), при изготовлении кваса, хлебных заквасок и «жидких дрожжей » для хлебопечения, при квашении капусты, огурцов, при силосовании кормов.

Все микроорганизмы, вызывающие молочнокислое брожение, разделяются на две большие группы. К первой группе принадлежат микроорганизмы, являющиеся истинными анаэробами и сбраживающие гексозы в точном соответствии с вышеприведенным суммарным уравнением молочнокислого брожения. Их называют гомоферментативными молочнокислыми бактериями . Вторую группу образуют гетероферментативные молочнокислые бактерии , которые, кроме молочной кислоты, образуют значительные количества других продуктов, в частности, уксусной кислоты и этилового спирта.

ИСПОЛЬЗОВАНИЕ МУЛЬТИЭНЗИМНОГО КОМПЛЕКСА ФЕРМЕНТНЫХ ПРЕПАРАТОВ ООО «РУСФЕРМЕНТ» НА РАЗЛИЧНЫХ СХЕМАХ ВОДНО-ТЕПЛОВОЙ ОБРАБОТКИ ЗЕРНОГО СЫРЬЯ ПРИ ПРОИЗВОДСТВЕ СПИРТА

Компания ООО «РУСФЕРМЕНТ» располагает большим ассортиментом ферментных препаратов широкого спектра действия. Имея такой ассортимент, удается подобрать мультиэнзимный комплекс препаратов, который позволяет гидролизовать как крахмалистую часть зерна, так и некрахмалистые полисахариды и белок.

Основной составляющей зерновых культур, используемых для производства спирта, является крахмал. Этот полисахарид (α-1,4-глюкан) имеет высокую молекулярную массу и состоит из 10000-100000 глюкозных остатков, связанных химическими α-глюкозидными связями в длинные цепи. Крахмал состоит из линейной амилозы (чистый α-1,4-глюкан) и разветвленного амилопектина (α-1,4-глюкан, содержащий 5-6 % α-1,6-связей), причем соотношение между ними варьируется в зависимости от вида зерна. В растительной клетке крахмал находится в виде крахмальных зерен, которые окружены оболочкой из трудногидролизуемых некрахмальных полисахаридов – целлюлозы, ксиланов (пентозанов) и бета-глюканов.

В процессе водно-тепловой обработки зерна основная часть крахмала переходит в раствор, и как следствие, на несколько порядков, возрастает вязкость (эффект клейстеризации).При этом часть крахмала остается в исходном состоянии, поскольку некрахмальные полисахариды (НПС), образуют пространственную сетку вокруг зерен крахмала и препятствуют его выходу в раствор.

Расщепление крахмала до глюкозы под действием ферментов можно разделить на 3 этапа. На первом происходит набухание зерен крахмала и растворение полимерной молекулы.

На втором этапе крахмал расщепляется под действием фермента альфа-амилазы с образованием декстринов (олигосахаридов, имеющих молекулярную массу меньше, чем исходный крахмал).

На третьем этапе декстрины под действием фермента глюкоамилазы превращаются в глюкозу и мальтозу, которые затем сбраживаются дрожжами в спирт.

Альфа-амилазы по механизму своего действия на субстрат (крахмал) относятся к классу эндополимераз, они осуществляют хаотический гидролиз внутренних связей в полимерной молекуле крахмала.

Глюкоамилазы, напротив, относятся к классу экзополимераз, они атакуют субстрат с конца, последовательно отщепляя глюкозные (и мальтозные) остатки от более крупных молекул.

Глюкоамилазы проявляют наибольшую активность по отношению к небольшим молекулам мальтодекстринов, содержащих 5-50 глюкозных остатков, и очень незначительную активность по отношению к исходному крахмалу.Именно поэтому глюкоамилазы применяются после частичного разрушения крахмала под действием альфа-амилаз.

В различных видах зерна содержание и состав крахмальной части и некрахмалистых полисахаридов (НПС) может различаться (таблица 1). НПС, несмотря на сходство с крахмалом, не могут гидролизоваться под действием амилаз. Поэтому, для повышения степени утилизации крахмала и, естественно, увеличения выхода спирта, целесообразно применять ферментные препараты, гидролизующие НПС.

Для гидролиза пентозанов применяются препараты, содержащие фермент ксиланазу, для гидролиза бета-глюканов – β-глюконазу, для гидролиза целлюлозы – целлюлазу. Наиболее целесообразно применять ферментные препараты, содержащие в своем составе комплекс ферментов, гидролизующих НПС.

Таблица 1 Содержание основных компонентов углеводов в зерновом сырье (%).

Зерно

Крахмал

Пентозаны

β-глюкан

Целлюлоза

Сахара

Белок

Жир

Пшеница

55-65

6,0-6,6

0,7-0,8

2,5-3,0

9-15(до25)

1,7-2,3

Рожь

52-60

8,7-10,0

2,2-2,8

2,2-2,8

10-12

Ячмень

53-57

5,7-7,0

Кукуруза

60-65

8-12

4,0-8,0

Также известно, что при водно-тепловой обработке зернового сырья часть белка переходит в раствор, а его большая часть образует стойкие гели с некрахмалистыми полисахаридами. В последнее время возросла доля белка в зерне - в пшенице доходит до 25% , а во ржи до 15%. Нерастворенный белок является источником инфекции, откладывается на оборудовании и в виде нагара на БРУ. Поэтому, гидролиз зернового белка – производственная необходимость, позволяющая:

Сохранить аминокислоты
- снизить пенообразование
- облегчить мойку оборудования

- увеличить доступ амилолитических ферментов к субстрату
- повысить выход спирта

На сегодня производственниками все чаще используются протеолитические ферменты и эффект от их применения очевиден.


Таким образом, на основании приведенных данных по составу зерна и используемых ферментных препаратов с широким диапазоном действия нашей компании, нами разработаны таблицы оптимизации внесения ферментных препаратов для различных схем водно-тепловой обработки.

Ферментативный гидролиз крахмала

Основным процессом при переработке крахмалсодержащего сырья в бродильных производствах является гидролиз крахмала амилолитическими ферментами солода и ферментных препаратов. Углеводная часть крахмала состоит из двух полисахаридов: амилозы и амилопектина.

Амилоза и амилопектин построены из остатков глюкозы С 6 Н 10 О 5 . Амилоза имеет молекулярную массу 3·10 5 – 1·10 6 , молекулярная масса амилопектина достигает сотен миллионов. Схема строения молекулы амилозы представлена в виде длинной цепочки глюкозных остатков, связанных глюкозидными α-1,4-связями. В молекуле амилозы соединены несколько таких параллельно расположенных цепочек. В каждой из них глюкозные остатки расположены по спирали. Схема строения молекулы амилопектина представлена в виде разветвленной цепи, состоящей из большого числа глюкозных остатков (около 2500). Главная цепочка, к которой присоединяются боковые ветви, состоит из 25 – 30 глюкозных остатков. Каждая же отдельная боковая ветвь состоит из 15 – 18 остатков, а внутренние отрезки цепей (между ветвления) – из 8 – 9 таких остатков. Боковые цепочки, в свою очередь, связаны с соседними цепочками. В амилопектине остатки глюкозы в пределах одной цепочки связаны между собой, так же как в амилозе, α-1,4-связью. Но связь между отдельными цепочками в амилопектине осуществляется α-1,6-глюкозидными связями.

Ферментативный гидролиз крахмала проводится амилолитическими ферментами. Амилолитический комплекс солода (проросшего зерна) состоит из α- и β-амилазы и декстриназы (олиго-α-1,6-глюкозидазы). В ферментных препаратах присутствуют α-амилаза, олиго-α-1,6-глюкозидаза и глюкоамилаза. Каждый фермент имеет свои специфические особенности, которые обусловливают определенные качественные характеристики получаемых продуктов.

α-Амилаза – эндофермент, гидролизующий α-1,4-связи внутри молекулы амилозы и амилопектина. Механизм действия фермента многоцепочный, неупорядоченный; в результате образуются продукты неполного гидролиза крахмала – α-декстрины, поэтому α-амилазу называют декстринирующим ферментом. При длительном действии α-амилазы на амилозу фермент почти полностью превращают ее в мальтозу и небольшое количество глюкозы.

Действие α-милазы на амилопектин приводит к образованию мальтозы и низкомолекулярных декстринов с 5 – 8 глюкозными остатками. Такое поведение α-амилазы обусловлено тем, что фермент не действует на α-1,6-глюкозидные связи в местах разветвления макромолекул амилопектина.

β-Амилаза – экзофермент, гидролизующий α-1,4-связи с нередуцирующих концов молекул амилозы и амилопектина с образованием мальтозы. Она является сахарофицирующим ферментом, который не расщепляет α-1,6-связи.

При совместном действии α- и β-амилаз на крахмал 95 % превращается в мальтозу и 5 % - в низкомолекулярные предельные декстрины, содержащие α-1,6-глюкозидные связи.

В просяном и овсяном солодах содержится фермент декстриназа, разрывающий α-1,6-глюкозидную связь в амилопектине и предельных декстринах.

Глюкоамилазе – экзофермент, расщепляющий как α-1,4-, так и α-1,6-глюкозидные связи. Действуя с нередуцируемых концов молекул амилозы и амилопектина, глюкоамилаза отщепляет молекулу глюкозы в β-форме.

Основными факторами, влияющими на скорость ферментативных реакций, являются температура, рН, концентрация веществ в субстрате и ферментов. С повышением температуры ферментативный гидролиз крахмала ускоряется, однако по достижении определенной температуры происходит инактивация ферментов.

β-Амилаза ячменного солода имеет низкую термостойкость при нагревании до 70 °С, она разрушается; тепловая инактивация данного фермента при 70 °С почти полностью завершается за несколько минут.

α-Амилаза ячменного солода обладает более высокой термостойкостью и разрушается при температуре около 80 °С.

Оптимальная температура для β-амилазы в заторе 63 °С, а для α амилазы 70 °С. В оптимальных условиях одна молекула β-амилазы может гидролизовать 237000 связей в минуту.

Оптимальная температура действия глюкоамилазы микроскопических грибов и бактерий 55 – 60 °С. α-Амилаза ферментных препаратов бактериального происхождения обладает высокой термостойкостью. Ее оптимальная температура действия 85 – 95 °С.

Каждый фермент имеет оптимум рН, при котором он наиболее активен; при более высоких или более низких значениях рН активность фермента снижается. Максимальная активность α-амилазы проявляется при рН 5,7, а β-амилазы – при рН около 4,8. при рН 2,3 и 9,7 амилазы полностью инактивируются.

Оптимальная величина рН для α-амилазы микроскопических грибов составляет 4,5 – 5,0, для глюкоамилазы – 4,5 – 4,6, для бактериальной α-амилазы – 5,0 – 6,0.

Скорость ферментативной реакции с увеличением концентрации фермента увеличивается, но до известного предела. До образования 75 – 80 % теоретического количества мальтозы (79,1 – 84,4 г из100 г крахмала) реакция осахаривания протекает быстро, а затем резко замедляется: идет в 1000 раз медленнее, чем в начале расщепления.

С увеличением концентрации экстрактивных веществ в субстрате ферментативный гидролиз крахмала замедляется. Это объясняется тем, что с увеличением концентрации веществ увеличивается вязкость затора, вследствие чего затрудняется процесс диффузии между субстратом и ферментом.

Гидролиз крахмала контролируют обычно по окраске, которую дают промежуточные продукты гидролиза с йодом. Окрашивание происходит в результате расположения молекул йода внутри спиральных витков глюкозных остатков. Цвет образовавшихся соединений обусловлен длиной цепочки глюкозных остатков.

Крахмал с йодом дает синее окрашивание. Близкие к крахмалу самые крупные декстрины – амилодекстрины (молекулярная масса 10000 – 12000) окрашиваются йодом в фиолетово-синий цвет; более мелкие декстрины – эритродекстрины (молекулярная масса 4000 – 7000) – в красно-бурый; самые мелкие – ахродекстрины и мальтодекстрины (молекулярная масса 2900 – 3700) совершенно не окрашиваются.

Сырой неоклейстеризованный крахмал расщепляется под действием амилаз, но очень медленно. Атакуемость амилолитическими ферментами при их действии на клейстеризованный крахмал усиливается. Для ускорения процесса клейстеризации и растворения крахмала зернопродуктов целесообразно подвергать их предварительной тепловой обработке путем запаривания под давлением. При нагревании с водой крахмал переходит из твердого состояния в студнеобразное – он клейстеризуется. При этом происходит набухание крахмальных зерен (гранул) с последующим их разрывом и диспергированием.



С повышением температуры клейстер начинает разжижаться, а затем становится жидким.

Итак, в ходе гидролиза крахмала нужно различать три стадии: клейстеризацию, разжижение и осахаривание.

Требования к ферментативному гидролизу крахмала в бродильных производствах различны. Так, в спиртовом производстве стремятся получить максимально возможное количество сбраживаемых сахаров, так как декстрины непосредственно дрожжами не сбраживаются. В условиях спиртового производства осахаривание декстринов происходит на стадии брожения, когда уже большая часть мальтозы сброжена. Этот процесс имеет большое значение с точки зрения получения наибольшего выхода спирта из крахмала. Поэтому очень важно, чтобы осахаривающие ферменты сохранили свою активность до конца брожения.

В пивоваренном производстве гидролиз крахмала необходимо проводить так, чтобы в сусле кроме мальтозы присутствовало определенное количество ахро- и мальтодекстринов, обусловливающих полноту вкуса и вязкость пива. Для сортов светлого пива гидролиз крахмала ведут до тех пор, пока не образуется 80 – 85 % сбраживаемых сахаров и 15 – 20 % декстринов, не окрашиваемых йодом.

Большинство промышленно важных ферментов относятся к классу гидролаз, потребность в которых исчисляется десятками тысяч тонн. В технологии бродильных производств гидролазам принадлежит огромная роль, так как именно они отвечают за подготовку сырья к сбраживанию.

К гидролазам относятся амилолитические, протеолитические, цитолитические, липолитические, пектолитические и другие ферменты.

Гидролиз крахмала осуществляется амилолитическими ферментами.

Крахмал - полисахарид, состоящий в свою очередь из двух полисахаридов, которые отличаются степенью полимеризации и типом строения – амилозой(примерное содержание 20-30 %)и амилопектином (70- 80 %). Структурной единицей крахмала, а, следовательно, амилозы и амилопектина, является глюкоза, остатки которой соединены между собой α-1,4 и α-1,6- глюкозидньми связями.

Амилоза имеет линейное строение, связь между остатками глюкозы α-1,4 (между 1-м и 4-м углеродными атомами). Растворима в горячей воде без набухания. Образует растворы невысокой вязкости. Молекулярная масса от 60 до 600. С йодом дает синее окрашивание.

о-о-о-о-о-о-о-о-о-о-о-о-о-о-о-о-о-

Рисунок 16 – Строение амилозы

Амилопектин представляет собой разветвленную цепь, состоящую из большого числа глюкозных остатков (около 2500). Главная цепочка состоит из 25-30 остатков, а боковые __ из 15-18. В амилопектине остатки глюкозы на линейных участках связаны α-1,4- связью, а в местах ветвления связь α-1,6. В воде не растворяется. При нагревании образует клейстер. С йодом дает фиолетовое окрашивание.

Гидролиз крахмала и продуктов его частичного гидролиза, а также гликогена, осуществляется амилазами (α-амилазой, β-амилазой, глюкоамилазой и другими амилолитическими ферментами).

α- амилаза (декстриногенамилаза) - по механизму действия относится к эндоферментам, т.е. действует на молекулу субстрата изнутри, беспорядочно, что приводит к быстрому снижению вязкости раствора крахмала. Гидролизует связи α-1,4 в полисахаридах, содержащих три и более остатков Д-глюкозы.

Амилоза под действием α-амилазы сначала распадается на декстрины среднего размера, которые затем расщепляются на низкомолекулярные декстрины и мальтозу. При длительном действии фермента амилоза практически полностью превращается в мальтозу и небольшое количество глюкозы.

Действие α-амилазы на амилопектин приводит к образованию мальтозы и низкомолекулярных декстринов.

Общая схема гидролиза крахмала α-амилазой:

α-амилаза

Крахмал низкомолекулярные декстрины

(много)+ мальтоза (мало) + глюкоза (очень мало)


Оптимальные условия действия фермента: рН 5,7, температура 70 °С.

β-амилаза (сахарогенамилаза) __ экзофермент, катализирует гидролиз связей α -1,4 в полисахаридах, последовательно отщепляя остатки мальтозы от нередуцирующего (где отсутствует свободная альдегидная группа) конца цепей. β-амилаза расщепляет амилозу полностью (если количество молекул глюкозы в ней четное) в мальтозу, если нечетное, то наряду с мальтозой образуется мальтотриоза.

В амилопектине β-амилаза действует лишь на свободные нередуцирующие концы глюкозных цепочек с образованием мальтозы и высокомолекулярных декстринов. Действие ее прекращается при приближении к разветвлению (где имеется связь α-1,6) на расстоянии одной молекулы глюкозы. Образовавшиеся декстрины гидролизуются дальше α-амилазой до декстринов меньшей молекулярной массы.

Общая схема гидролиза крахмала под действием β-амилазы:

β-амилаза

Крахмал высокомолекулярные декстрины (много) + мальтоза (много) + мальтотриоза (мало)

Оптимальные условия действия β-амилазы: рН 4,7, температура 63 °С.

Таким образом, при совместном действии α- и β-амилаз на крахмал только 80 % его превращается в сбраживаемые сахара (мальтозу, глюкозу, мальтотриозу) и 20 % __ в декстрины с 5-8 глюкозными остатками.

Предельная декстриназа __ эндофермент, неупорядоченно гидролизует в крахмале, гликогене, декстринах α-1,6-глюкозидную связь. Чаще всего образуется мальтотриоза. Оптимальные параметры действия: рН 6,5, температура 50 о С.

Глюкоамилаза __ экзофермент, гидролизует связи α-1,4 и α-1,6 в полисахаридах, последовательно отщепляя по одному остатку глюкозы с нередуцирующих концов цепей. Связи α-1,4 в крахмале разрушаются быстрее, чем α-1,6. Оптимальные условия: рН 4,5-4,6, температура 55-60°С.

В различных бродильных производствах к гидролизу крахмала предъявляют разные требования. В производстве спирта необходимо прогидролизовать крахмал как можно глубже, чтобы получить больше сбраживаемых сахаров, а, следовательно, более высокий выход спирта.

В производстве пива полный гидролиз крахмала не осуществляют, так как в среде кроме сбраживаемых сахаров (нужных для образования определенного количества спирта) должны находиться низкомолекулярные декстрины, придающие полноту вкуса и вязкость пиву.

В зависимости от источника фермента свойства амилаз и других ферментов могут сильно отличаться не только по механизму действия и конечным продуктам реакции, но и оптимальным условиям для проявления максимальной активности. Выше были приведены оптимальные параметры действия для α- и β-амилаз солода.

Бактериальные амилазы отличаются от солодовых большей термостабильностью. Оптимальные параметры действия: температура 80-85 о С (иногда до 90-95 о С), рН 5,5-5,8.

Грибные амилазы (к ним, в частности, относится глюкоамилаза) более устойчивы к реакции среды: оптимумы температуры 50-60 о С, рН 4,2-4,7.

Таким образом, бактериальные амилазы более термостабильны, а грибные амилазы действуют в более кислой среде в сравнении с солодовыми ферментами.

Подготовка ферментных препаратов: глубинную культуру плесневых грибов или бактерий дезинфицируют формалином; сухую поверхностную культуру смешивают с водой температурой 28-30 єС в соотношении 1:1. Затем ее тщательно измельчают на дробилках, добавляют воду в количестве 3-4 дм 3 на 1 кг препарата, дезинфицируют раствором формалина, выдерживают 25-30 мин и направляют на осахаривание.

Расход поверхностной культуры - 5 % к массе крахмала разваренной массы. Можно использовать смесь сухой культуры ферментных препаратов и солода. Их вместе измельчают и готовят суспензию наподобие солодового молока. При осахаривании крахмала в спиртовом производстве необходимо достичь полного его гидролиза до сбраживаемых сахаров. На практике осахаривание протекает на нескольких технологических стадиях:

  • - при разваривании сырья;
  • - при осахаривании при оптимальной температуре для действия ферментов;
  • - при брожении (температура благоприятная для жизнедеятельности дрожжей, но не ферментов).

При разваривании под действием бактериальной б-амилазы гидролиз крахмала незначителен, образуются, главным образом, декстрины.

На стадии осахаривания образуется максимальное количество сбраживаемых сахаров. Крахмал гидролизуется на 70-75 % до глюкозы и мальтозы и 25-30 % предельных декстринов. Причем если используется в качестве осахаривающего материала солод, то образуется 71-76 % мальтозы и 24-29 % глюкозы от суммы сбраживаемых сахаров; если применяют ферментные препараты, то 14-21 % мальтозы и 79-80 % глюкозы.

Некрахмальные полисахариды под действием ферментов солода почти не гидролизуются, ферментными препаратами гидролизуются в незначительной степени, что является положительным, так как возрастает количество сбраживаемых сахаров.

При осахаривании гидролизуются также белки под действием протеолитических ферментов до пептонов, полипептидов аминокислот (необходимы для питания дрожжей). Причем солод при гидролизе дает больше аминокислот, чем ферментные препараты.

Предельные декстрины доосахариваются до мальтозы в процессе брожения декстриназой солода или глюкоамилазой ферментных препаратов.

На скорость осахаривания крахмала влияют температура и рН среды. Оптимальная температура для действия амилазы солода на 2 %-й раствор картофельного крахмала составляет 53-58 єС. Однако для клейстеризации нерастворенного крахмала, вносимого с солодом, и стерилизации замеса необходима более высокая температура. При таких температурах (свыше 56 єС) амилаза инактивируется, но медленно. Поэтому осахаривание проводят при температуре 60-62 єС. Эта температура хотя и выше оптимальной, но присутствующие в заторе защитные вещества (сахара, декстрины, пептиды) предохраняют амилазу от инактивации. рН затора 4,9-5,6.

Осахаренное сусло должно иметь следующие показатели:

Полнота осахаривания определяется по йодной пробе. При использовании в качестве осахаривающего материала солодового молока цвет раствора йода с каплей фильтрата не должен изменяться. Красный цвет свидетельствует о наличии в сусле декстринов, сине-фиолетовый - о присутствии неосахаренного крахмала. Применение ферментных препаратов для осахаривания может оставлять окраску фильтрата с йодом светло-коричневой.

Доброкачественность - отношение общего количества содержащихся в сусле сбраживаемых углеводов к общей сумме растворимых сухих веществ, выраженное в процентах. Доброкачественность должна быть в пределах 76-78 %.

Кислотность выражают в градусах кислотности. 1є кислотности соответствует 1 см 3 раствора NаОН концентрацией 1 моль/дм 3 , израсходованного на нейтрализацию 20 см 3 раствора (сусла, бражки). Кислотность должна быть в пределе 0,2-0,3є, что соответствует рН 4,9-5,6. Кислотность сусла меньше 0,2є может привести к развитию посторонней микрофлоры, выше 0,4є - к инактивации ферментов.

© 2024 skudelnica.ru -- Любовь, измена, психология, развод, чувства, ссоры