Презентация - атомная энергетика. Презентация на тему "развитие атомной энергетики" Презентация развитие атомной энергии

Главная / Ссоры

Cлайд 1

* ATOMCON-2008 26.06.2008 Стратегия развития атомной энергетики России до 2050 года Рачков В.И., Директор Департамента научной политики Госкорпорации «Росатом», доктор технических наук, профессор

Cлайд 2

* Мировые прогнозы развития атомной энергетики Выравнивание удельных энергопотреблений в развитых и развивающихся странах потребует увеличения спроса на энергоресурсы к 2050 г. в три раза. Существенную долю прироста мировых потребностей в топливе и энергии может взять на себя атомная энергетика, отвечающая требованиям крупномасштабной энергетики по безопасности и экономике. WETO - «World Energy Technology Outlook - 2050», Еuropean Commission, 2006 «The Future of Nuclear Energy», Massachusetts Institute of Technology, 2003

Cлайд 3

* Состояние и ближайшие перспективы развития атомной энергетики мира в 12 странах строятся 30 ядерных энергоблоков общей мощностью 23,4 ГВт(э). около 40 стран официально заявили о намерениях создать ядерный сектор в своей национальной энергетике. К концу 2007 года в 30-ти странах мира (в которых живут две трети населения планеты) действовали 439 ядерных энергетических реакторов общей установленной мощностью 372,2 ГВт(эл). Ядерная доля в электрической генерации в мире составила 17%. Страна Кол-во реакторов, шт. Мощность, МВт Доля АЭ в произв. э/э, % Франция 59 63260 76,9 Литва 1 1185 64,4 Словакия 5 2034 54,3 Бельгия 7 5824 54,1 Украина 15 13107 48,1 Швеция 10 9014 46,1 Армения 1 376 43,5 Словения 1 666 41,6 Швейцария 5 3220 40,0 Венгрия 4 1829 36,8 Корея, Юж. 20 17451 35,3 Болгария 2 1906 32,3 Чехия 6 3619 30,3 Финляндия 4 2696 28,9 Япония 55 47587 27,5 Германия 17 20470 27,3 Страна Кол-во реакторов, шт. Мощность, МВт Доля АЭ в произв. э/э, % США 104 100582 19,4 Тайвань (Китай) 6 4921 19,3 Испания 8 7450 17,4 Россия 31 21743 16,0 Великобритания 19 10222 15,1 Канада 18 12589 14,7 Румыния 2 1300 13,0 Аргентина 2 935 6,2 ЮАР 2 1800 5,5 Мексика 2 1360 4,6 Нидерланды 1 482 4,1 Бразилия 2 1795 2,8 Индия 17 3782 2,5 Пакистан 2 425 2,3 Китай 11 8572 1,9 Итого 439 372202 17,0

Cлайд 4

* Двухэтапное развитие атомной энергетики Энергетика на тепловых реакторах и накопление в них плутония для запуска и параллельного освоения быстрых реакторов. Развитие на основе быстрых реакторов крупномасштабной АЭ, постепенно замещающей традиционную энергетику на ископаемом органическом топливе. Стратегической целью развития АЭ являлось овладение на основе быстрых реакторов неисчерпаемыми ресурсами дешевого топлива – урана и, возможно, тория. Тактической задачей развития АЭ было использование тепловых реакторов на U-235 (освоенных для производства оружейных материалов, плутония и трития, и для атомных подводных лодок) с целью производства энергии и радиоизотопов для народного хозяйства и накопления энергетического плутония для быстрых реакторов.

Cлайд 5

* Атомная отрасль России В настоящее время отрасль включает в себя: Ядерно-оружейный комплекс (ЯОК). Комплекс по обеспечению ядерной и радиационной безопасности (ЯРБ). Ядерный энергетический комплекс (ЯЭК): ядерно-топливный цикл; атомная энергетика. Научно-технический комплекс (НТК). Госкорпорация «РОСАТОМ» призвана обеспечить единство системы управления в целях синхронизации программ развития отрасли с системой внешних и внутренних приоритетов России. Основная задача ОАО «Атомэнергопром» - формирование глобальной компании, успешно конкурирующей на ключевых рынках.

Cлайд 6

* В 2008 году работают 10 АЭС (31 энергоблок) мощностью – 23,2 ГВт. В 2007 году АЭС произвели 158,3 млрд.кВт.ч электроэнергии. Доля АЭС: в общем производстве электроэнергии – 15,9% (в европейской части – 29,9%); в общей установленной мощности - 11,0%. АЭС России в 2008 году

Cлайд 7

Cлайд 8

* Недостатки современной ядерной энергетики Открытый ЯТЦ тепловых реакторов - ограниченный топливный ресурс и проблема обращения с ОЯТ. Большие капитальные затраты на сооружение АЭС. Ориентация на энергоблоки большой единичной мощности с привязкой к электросетевым узлам и крупным электропотребителям. Низкая способность АЭС к маневру мощностью. В настоящее время в мире нет определенной стратегии обращения с ОЯТ тепловых реакторов (к 2010 г. Будет накоплено более 300 000 тонн ОЯТ, с ежегодным приростом 11 000-12 000 тонн ОЯТ). В России накоплено 14 000 тонн ОЯТ суммарной радиоактивностью 4,6 млрд. Ки с ежегождным приростом 850 тонн ОЯТ. Необходим переход на сухой способ хранения ОЯТ. Переработку основной массы облученного ядерного топлива целесообразно отложить до начала серийного строительства быстрых реакторов нового поколения.

Cлайд 9

* Проблемы обращения с РАО и ОЯТ Тепловой реактор мощностью 1 ГВт производит в год 800 тонн низко- и среднеактивных РАО и 30 тонн высокоактивного ОЯТ. Высокоактивные отходы, занимая по объему менее 1%, по суммарной активности занимают 99%. Ни одна из стран не перешла к использованию технологий, позволяющих решить проблему обращения с облученным ЯТ и радиоактивными отходами. Тепловой реактор электрической мощностью 1 ГВт производит ежегодно 200 кг плутония. Скорость накопления плутония в мире составляет ~70 т/год. Основным международным документом, регулирующим использование плутония, является Договор о нераспространении ядерного оружия (ДНЯО). Для усиления режима нераспространения необходима его технологическая поддержка.

Cлайд 10

* Направления стратегии в области атомного машиностроения Достройка производства критических элементов технологии ЯСПП на российских предприятиях, полностью или частично входящих в структуру Госкорпорации “РОСАТОМ”. Создание альтернативных нынешним монополистам поставщиков основного оборудования. По каждому типу оборудования предполагается сформировать не менее двух возможных производителей. Необходимо формирование тактических и стратегических альянсов Госкорпорации «РОСАТОМ» с основными участниками рынка.

Cлайд 11

* Требования к крупномасштабным энерготехнологиям Крупномасштабная энерготехнология не должна зависеть от естественной неопределенности, связанной с добычей ископаемого топливного сырья. Процесс «сжигания» топлива должен быть безопасным. Локализуемые отходы должны быть физически и химически не более активны, чем исходное топливное сырье. При умеренном росте установленной мощности АЭ ядерная энергетика будет развиваться в основном на тепловых реакторах с незначительной долей быстрых реакторов. В случае интенсивного развития ядерной энергетики решающую роль в ней станут играть быстрые реакторы.

Cлайд 12

* Ядерная энергетика и риск распространения ядерного оружия Элементы ядерной энергетики, определяющие риск распространения ядерного оружия: Новая ядерная технология не должна приводить к открытию новых каналов получения оружейных материалов и использованию ее для подобных целей. Развитие ядерной энергетики на быстрых реакторах с соответствующим образом построенным топливным циклом создает условия для постепенного снижения риска распространения ядерного оружия. Разделение изотопов урана (обогащение). Выделение плутония и/или U-233 из облученного топлива. Долговременное хранение облученного топлива. Хранение выделенного плутония.

Cлайд 13

* Развитие атомной энергетики России до 2020 года Вывод: 3,7 ГВт Калинин 4 достройка НВАЭС-2 1 Ростов 2 достройка НВАЭС-2 2 Ростов 3 Ростов 4 ЛАЭС-2 1 ЛАЭС-2 2 ЛАЭС-2 3 Белоярка 4 БН-800 Кола 2 НВАЭС 3 ЛАЭС-2 4 Кола 1 ЛАЭС 2 ЛАЭС 1 НВАЭС 4 Северская 1 Нижегород 1 Нижегород 2 Кола-2 1 Кола-2 2 обязательная дополнительная программа программа Ввод: 32,1 ГВт (обязательная программа) Плюс 6,9 Гвт (дополнительная программа) красной линией ограничено количество энергоблоков с гарантированным (ФЦП) финансированием синей линией обозначена обязательная программа ввода энергоблоков Нижегород 3 ЮУральская 2 Тверская 1 Тверская 2 Центральная 1 Тверская 3 Тверская 4 ЮУральская 3 ЮУральская 4 Кола-2 3 Кола-2 4 ЮУральская 1 Северская 2 Прим 1 Прим 2 Курск 5 НВАЭС-2 3 Центральная 4 Нижегород 4 НВАЭС-2 4 Центральная 2 Центральная 3 Действующие блоки - 58 Остановленные блоки - 10 Штатный коэффициент должен уменьшаться от современных 1,5 чел/МВт до 0,3-0,5 чел/МВт.

Cлайд 14

* Переход к новой технологической платформе Ключевым элементом НТП является развитие технологии ЯСПП с реактором на быстрых нейтронах. Концепция «БЕСТ» с нитридным топливом, равновесным КВ, и тяжелометаллическим теплоносителем является наиболее перспективным выбором для создания базы новой ядерной энерготехнологии. Страхующим проектом является промышленно освоенный быстрый реактор на натриевом теплоносителе (БН). В силу проблем с масштабированием данный проект является менее перспективным, чем «БЕСТ», на его основе предполагается отработка новых видов топлива и элементов замкнутого ЯТЦ. Принцип внутренне присущей безопасности: детерминистическое исключение тяжелых реакторных аварий и аварий на предприятиях ядерного топливного цикла; трансмутационный замкнутый ядерный топливный цикл с фракционированием продуктов переработки ОЯТ; технологическую поддержку режима нераспространения.

Cлайд 15

* Возможная структура энергогенерации к 2050 году Доля АЭ в ТЭК по выработке - 40% Доля АЭ в ТЭК по выработке - 35%

Cлайд 16

* Периоды развития ядерных технологий в XXI веке Мобилизационный период: модернизация и повышение эффективности использования установленных мощностей, достройка энергоблоков, эволюционное развитие реакторов и технологий топливного цикла с их внедрением в промышленную эксплуатацию, разработка и опытная эксплуатация инновационных технологий для АЭС и топливного цикла. Переходный период: расширение масштабов атомной энергетики и освоение инновационных технологий реакторов и топливного цикла, (быстрые реакторы, высокотемпературные реакторы, реакторы для региональной энергетики, замкнутый уран-плутониевый и торий-урановый цикл, использование полезных и выжигание опасных радионуклидов, долговременная геологическая изоляция отходов, производство водорода, опреснение воды). Период развития: развертывание инновационных ядерных технологий, формирование многокомпонентной ядерной и атомно-водородной энергетики.

Cлайд 17

* Краткосрочные задачи (2009-2015 гг.) Формирование технической базы для решения проблемы энергообеспечения страны на освоенных реакторных технологиях с безусловным развитием инновационных технологий: Повышение эффективности, модернизация, продление срока службы действующих реакторов, достройка энергоблоков. Обоснование работы реакторов в режиме маневренности и разработка систем поддержания работы АЭС в базовом режиме. Сооружение энергоблоков следующего поколения, включая АЭС с БН-800 с одновременным созданием пилотного производства МОХ топлива. Разработка программ регионального атомного энергоснабжения на базе АЭС малой и средней мощности. Развертывание программы работ по замыканию ЯТЦ по урану и плутонию для решения проблемы неограниченного топливообеспечения и обращения с РАО и ОЯТ. Развертывание программы использования ядерных энергоисточников для расширения рынков сбыта (теплофикация, теплоснабжение, производство энергоносителей, опреснение морской воды). Сооружение энергоблоков в соответствие с Генсхемой.

Cлайд 18

* Среднесрочные задачи (2015-2030 гг.) Расширение масштабов атомной энергетики и освоение инновационных технологий реакторов и топливного цикла: Сооружение энергоблоков в соответствие с Генсхемой. Разработка и внедрение инновационного проекта ВВЭР третьего поколения. Вывод из эксплуатации и утилизация энергоблоков первого и второго поколений и замещение их установками третьего поколения. Формирование технологической базы для перехода к крупномасштабной ядерной энергетике. Развитие радиохимического производства по переработке топлива. Опытная эксплуатация демонстрационного блока АЭС с быстрым реактором и производствами топливного цикла с внутренне присущей безопасностью. Опытная эксплуатация прототипного блока ГТ-МГР и производство топлива для него (в рамках международного проекта). Сооружение объектов малой энергетики, включая стационарные и плавучие энергетические и опреснительные станции. Разработка высокотемпературных реакторов для производства водорода из воды.

Cлайд 19

* Долгосрочные задачи (2030-2050 гг.) Развертывание инновационных ядерных технологий, формирование многокомпонентной ядерной и атомно-водородной энергетики: Создание инфраструктуры крупномасштабной ядерной энергетики на новой технологической платформе. Сооружение демонстрационного блока АЭС с тепловым реактором с торий-урановым циклом и его опытная эксплуатация. Переход к крупномасштабной ядерной энергетике требует широкого международного сотрудничества на государственном уровне. Необходимы совместные разработки, ориентированные на нужды как национальной, так и мировой энергетики.

Cлайд 20

Cлайд 21

1 слайд

Атомная энергетика МОУ гимназия №1 – город Галич Костромской области © Наньева Юлия Владимировна – учитель физики

2 слайд

3 слайд

Люди издавна задумывались над тем, как заставить работать реки. Уже в древности – в Египте, Китае, Индии – водяные мельницы для помола зерна появились задолго до ветряных – в государстве Урарту (на территории нынешней Армении), но были известны ещё в XIII в. до н. э. Одними из первых электростанций были «Гидроэлектростанции». Строились эти электростанции на горных реках где довольно сильное течение. Строительство ГЭС позволило сделать судоходными многие реки, так как строение плотин поднимало уровень воды и затапливало речные пороги, которые препятствовали свободному прохождению речных судов. Гидроэлектростанции

4 слайд

Для создания напора воды необходима плотина. Однако плотины ГЭС ухудшают условия обитания водяной фауны. Запруженные реки, замедлив течение, зацветают, уходят под воду обширные участки пахотной земли. Населённые пункты (в случае постройки плотины) будут затоплены, ущерб, который будет нанесен, несравним с выгодой строительства ГЭС. Кроме этого необходима система шлюзов для пропускания судов и рыбопропускные или водозаборные сооружения для орошения полей и водоснабжения. И хотя ГЭС имеют немалые преимущества перед тепловыми и атомными электростанциями, так как не нуждаются в топливе и потому вырабатывают более дешевую электроэнергию Выводы:

5 слайд

Теплоэлектростанции На тепловых электростанциях источником энергии служит топливо: уголь газ нефть, мазут, горючие сланцы. Коэффициент полезного действия ТЭС достигает 40%. Большая часть энергии теряется вместе с выбросами горячего пара. С экологической точки зрения ТЭС является наиболее загрязняющей. Деятельность тепловых электростанций неотъемлемо связана со сжиганием огромного количества кислорода и образованием углекислого газа и окислов других химических элементов. В соединении с молекулами воды они образуют кислоты, которые в виде кислотных дождей падают нам на головы. Не будем забывать и о "парниковом эффекте" - его влияние на изменение климата наблюдается уже сейчас!

6 слайд

Атомная электростанция Запасы источников энергии ограничены. По разным подсчетам, залежей угля в России при существующем уровне его добычи осталось на 400-500 лет, а газа и того меньше - на 30-60. И здесь на первое место выходит ядерная энергетика. Всё большую роль в энергетике начинают играть атомные электростанции. В настоящее время АЭС нашей страны дают около 15,7% электроэнергии. Атомная электростанция - основа энергетики использующей ядерную энергию для целей электрификации и теплофикации.

7 слайд

Ядерная энергетика основана на делении тяжёлых ядер нейтронами с образованием из каждого двух ядер – осколков и нескольких нейтронов. При этом освобождается колоссальная энергия, которая в последствии расходуется на нагревание пара. Работа любого завода или машины, вообще любая деятельность человека связана с возможностью возникновения риска для здоровья человека и окружающей среды. Как правило, люди с большей опаской относятся к новым технологиям, особенно если они слышали о возможных авариях. И атомные станции - не исключение. Выводы:

8 слайд

Уже очень давно, видя, какие разрушения могут приносить бури и ураганы, человек задумался над тем, нельзя ли использовать энергию ветра. Энергия ветра очень велика. Эту энергию можно получать, не загрязняя окружающую среду. Но у ветра есть два существенных недостатка: энергия сильно рассеяна в пространстве и ветер не предсказуем – часто меняет направление, вдруг затихает даже в самых ветреных районах земного шара, а иногда достигает такой силы, что ломает ветряки. Для получения энергии ветра применяют самые разные конструкции: от многолопастной «ромашки» и винтов вроде самолётных пропеллеров с тремя, двумя и даже одной лопастью до вертикальных роторов. Вертикальные конструкции хороши тем, что улавливают ветер любого направления; остальным приходится разворачиваться по ветру. Ветряные электростанции

9 слайд

Строительство, содержание и ремонт ветроустановок, круглосуточно работающих под открытым небом в любую погоду, стоят недёшево. Ветроэлектростанции такой же мощности как ГЭС, ТЭЦ или АЭС, по сравнению с ними должна занимать очень большую площадь, чтобы как-то компенсировать изменчивость ветра. Ветряки ставят так, чтобы они не загораживали друг друга. Поэтому строят огромные «ветряные фермы», в которых ветродвигатели стоят рядами на обширном пространстве и работают на единую сеть. В безветренную погоду такая электростанция может использовать воду набранную в ночное время. Размещение ветряков и водохранилища требуют больших площадей, которые используются под пахоту. К тому же ветроэлектростанции не безвредны: они мешают полётам птиц и насекомых, шумят, отражают радиоволны, вращающимися лопастями, создавая помехи приёму телепередач в близлежащих населённых пунктах. Выводы:

10 слайд

В тепловом балансе Земли солнечное излучение играет решающую роль. Мощность излучения, падающего на Землю, определяет предельную мощность, которую можно выработать на Земле без существенного нарушения теплового баланса. Интенсивность солнечного излучения и продолжительность солнечного сияния в южных районах страны дают возможность с помощью солнечных батарей получить достаточно высокую температуру рабочего тела для его использования в тепловых установках. Солнечные электростанции

11 слайд

Большая рассеянность энергии и нестабильность её поступления – недостатки солнечной энергетики. Эти недостатки частично компенсируется использованием аккумулирующих устройств, но всё же атмосфера Земли мешает получению и использованию «чистой» солнечной энергии. Для увеличения мощности СЭС необходимо установка большого числа зеркал и солнечных батарей - гелиостатов, которые должны оборудоваться с системой автоматического слежения за положением солнца. Преобразование одного вида энергии в другой неизбежно сопровождается выделением тепла, которое ведёт к перегреванию земной атмосферы. Выводы:

12 слайд

Геотермальная энергетика Около 4% всех запасов воды на нашей планете сосредоточено под землёй – в толщах горных пород. Воды, температура которых превышает 20 градусов по Цельсию, называют термальными. Нагреваются подземные воды в результате радиоактивных процессов протекающих в недрах земли. Люди научились использовать глубинное тепло Земли в хозяйственных целях. В странах где термальные воды подходят близко к поверхности земли, сооружают геотермальные электростанции (геоТЭС). ГеоТЭС устроены относительно просто: здесь нет котельной, оборудования для подачи топлива, золоуловителей и многих других приспособлений, необходимых для тепловых электростанций. Поскольку топливо у таких электростанций бесплатное, то и себестоимость вырабатываемой электроэнергии низкая.

13 слайд

Ядерная энергетика Отрасль энергетики, использующая ядерную энергию для электрификации и теплофикации; Область науки и техники, разрабатывающая методы и средства преобразования ядерной энергии в электрическую и тепловую. Основа ядерной энергетики - атомные электростанции. Первая атомная электростанция (5 МВт), положившая начало использованию ядерной энергии в мирных целях, была пущена в СССР в 1954. К началу 90-х гг. в 27 странах мира работало свыше 430 ядерных энергетических реакторов общей мощностью около 340 ГВт. По прогнозам специалистов, доля ядерной энергетики в общей структуре выработки электроэнергии в мире будет непрерывно возрастать при условии реализации основных принципов концепции безопасности атомных электростанций.

14 слайд

Развитие ядерной энергетики 1942 г. в США под руководством Энрико Ферми был построен первый ядерный реактор ФЕРМИ (Fermi) Энрико (1901-54), итальянский физик, один из создателей ядерной и нейтронной физики, основатель научных школ в Италии и США, иностранный член-корреспондент АН СССР (1929). В 1938 эмигрировал в США. Разработал квантовую статистику (статистика Ферми - Дирака; 1925), теорию бета-распада (1934). Открыл (с сотрудниками) искусственную радиоактивность, вызванную нейтронами, замедление нейтронов в веществе (1934). Построил первый ядерный реактор и первым осуществил в нем (2.12.1942) цепную ядерную реакцию. Нобелевская премия (1938).

15 слайд

1946 г. в Советском Союзе под руководством Игоря Васильевича Курчатова создан первый европейский реактор. Развитие ядерной энергетики КУРЧАТОВ Игорь Васильевич (1902/03-1960), российский физик, организатор и руководитель работ по атомной науке и технике в СССР, академик АН СССР (1943), трижды Герой Социалистического Труда (1949, 1951, 1954). Исследовал сегнетоэлектрики. Совместно с сотрудниками обнаружил ядерную изомерию. Под руководством Курчатова сооружен первый отечественный циклотрон (1939), открыто спонтанное деление ядер урана (1940), разработана противоминная защита кораблей, созданы первый в Европе ядерный реактор (1946), первая в СССР атомная бомба (1949), первые в мире термоядерная бомба (1953) и АЭС (1954). Основатель и первый директор Института атомной энергии (с 1943, с 1960 - имени Курчатова).

16 слайд

существенная модернизация современных ядерных реакторов усиление мер защиты населения и окружающей среды от вредного техногенного воздействия подготовка высококвалифицированных кадров для атомных электростанций разработка надежных хранилищ радиоактивных отходов и др. Главные принципы концепции безопасности атомных электростанций:

17 слайд

Проблемы ядерной энергетики Содействие распространению ядерного оружия; Радиоактивные отходы; Возможность аварии.

18 слайд

Озёрск ОЗЕРСК, город в Челябинской области Датой основания Озерска считается 9 ноября 1945, когда было принято решение начать строительство между городами Касли и Кыштым завода по производству оружейного плутония. Новое предприятие получило условное название База-10, позднее оно стало известно как комбинат «Маяк». Директором Базы-10 был назначен Б.Г. Музруков, главным инженером - Е.П. Славский. Курировали строительство завода Б.Л. Ванников и А.П. Завенягин. Научное руководство атомным проектом осуществлял И.В. Курчатов. В связи со строительством завода на берегу Иртяша был заложен рабочий поселок с условным названием Челябинск-40. 19 июня 1948 года первый в СССР промышленный атомный реактор был построен. В 1949 году База-10 начала поставки оружейного плутония. В 1950-1952 годах были введены в действие пять новых реакторов.

19 слайд

В 1957 году на заводе «Маяк» произошел взрыв емкости с радиоактивными отходами, в результате образовался Восточно-Уральский радиоактивный след шириной 5-10 км и длиной 300 км с населением 270 тысяч человек. Производство на объединении «Маяк»: оружейного плутония радиоактивные изотопы Применение: в медицине (лучевая терапия), в промышленности (дефектоскопия и слежение за ходом технологических процессов), в космических исследованиях (для изготовления атомных источников тепловой и электрической энергии), в радиационных технологиях (меченые атомы). Челябинск-40

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

2 слайд

Описание слайда:

Атомная энергетика России Атомная энергетика, на долю которой приходится 16% выработки электроэнергии, относительно молодая отрасль российской промышленности. Что такое 6 десятилетий в масштабах истории? Но этот короткий и насыщенный событиями отрезок времени сыграл важную роль в развитии электроэнергетики.

3 слайд

Описание слайда:

История Дату 20 августа 1945 г. можно считать официальным стартом «атомного проекта» Советского Союза. В этот день было подписано постановление Государственного комитета обороны СССР. В 1954 году в Обнинске была запущена самая первая атомная электростанция – первая не только в нашей стране, но и во всем мире. Станция обладала мощностью всего 5 МВт, проработала 50 лет в безаварийном режиме и была закрыта лишь в 2002 году.

4 слайд

Описание слайда:

В рамках федеральной целевой программы «Развитие атомного энергопромышленного комплекса России на 2007-2010 годы и на перспективу до 2015 года» планируется построить три энергоблока на Балаковской, Волгодонской и Калининской атомных электростанций. В целом же 40 энергоблоков должны быть построены до 2030 года. При этом мощности российских АЭС должны с 2012 года ежегодно увеличиваться на 2 ГВт, а с 2014 года – на 3 ГВт, а суммарная мощность атомных станций РФ к 2020 году должна достичь 40 ГВт.

6 слайд

Описание слайда:

7 слайд

Описание слайда:

Белоярская АЭС Расположена в городе Заречный, в Свердловской области, вторая промышленная атомная станция в стране (после Сибирской). На станции были сооружены три энергоблока: два с реакторами на тепловых нейтронах и один с реактором на быстрых нейтронах. В настоящее время единственным действующим энергоблоком является 3-й энергоблок с реактором БН-600 электрической мощностью 600 МВт, пущенный в эксплуатацию в апреле 1980 - первый в мире энергоблок промышленного масштаба с реактором на быстрых нейтронах. Он также является крупнейшим в мире энергоблоком с реактором на быстрых нейтронах.

8 слайд

Описание слайда:

9 слайд

Описание слайда:

Смоленская АЭС Смоленская АЭС – является крупнейшим предприятием Северо-Западного региона России. АЭС вырабатывает в восемь раз больше электроэнергии, чем другие электростанции области, вместе взятые. Введена в эксплуатацию в 1976 году

10 слайд

Описание слайда:

Смоленская АЭС Расположена рядом с городом Десногорск Смоленской области. Станция состоит из трёх энергоблоков, с реакторами типа РБМК-1000, которые введены в эксплуатацию в 1982, 1985 и 1990. В состав каждого энергоблока входят: один реактор тепловой мощностью 3200 МВт и два турбогенератора электрической мощностью по 500 МВт каждый.

11 слайд

Описание слайда:

12 слайд

Описание слайда:

13 слайд

Описание слайда:

Нововоронежская АЭС Нововоронежская АЭС – расположена на берегу Дона в 5 км от города энергетиков Нововоронежа и в 45 км к югу от Воронежа. Станция на 85 % обеспечивает потребности Воронежской области в электроэнергии, а также дает тепло для половины Нововоронежа. Введена в эксплуатацию в 1957 году.

14 слайд

Описание слайда:

Ленинградская АЭС Ленинградская АЭС – расположена в 80 км к западу от Санкт-Петербурга. На южном берегу Финского залива, снабжает электричеством примерно половину Ленинградской области. Введена в эксплуатацию в 1967 году.

15 слайд

Описание слайда:

Строящиеся АЭС 1 Балтийская АЭС 2 Белоярская АЭС-2 3 Ленинградская АЭС-2 4 Нововоронежская АЭС-2 5 Ростовская АЭС 6 Плавучая АЭС «Академик Ломоносов» 7 Прочие

16 слайд

Описание слайда:

Башкирская АЭС Башки́рская а́томная электроста́нция - недостроенная атомная электростанция, расположенная вблизи города Агидели в Башкортостане у слияния рек Белой и Камы. В 1990 году под давлением общественности после аварии на Чернобыльской АЭС строительство Башкирской АЭС было остановлено. Она повторила участь однотипных ей недостроенных Татарской и Крымской АЭС.

17 слайд

Описание слайда:

История На конец 1991 года в Российской Федерации функционировало 28 энергоблоков, общей номинальной мощностью 20 242 МВт. С 1991 года к сети было подключено 5 новых энергоблоков общей номинальной мощностью 5 000 МВт. На конец 2012 года в стадии строительства находятся ещё 8 энергоблоков, не считая блоков Плавучей атомной электростанции малой мощности. В 2007 году федеральные власти инициировали создание единого государственного холдинга «Атомэнергопром» объединяющего компании Росэнергоатом, ТВЭЛ, Техснабэкспорт и Атомстройэкспорт. 100 % акций ОАО «Атомэнергопром» передавалось одновременно созданной Государственной корпорации по атомной энергии «Росатом».

18 слайд

Описание слайда:

Выработка электроэнергии В 2012 году российские атомные станции выработали 177,3 млрд.кВт ч, что составило 17,1% от общей выработки в Единой энергосистеме России. Объем отпущенной электроэнергии составил 165,727 млрд.кВт·ч. Доля атомной генерации в общем энергобалансе России около 18 %. Высокое значение атомная энергетика имеет в европейской части России и особенно на северо-западе, где выработка на АЭС достигает 42 %. После запуска второго энергоблока Волгодонской АЭС в 2010 году, председатель правительства России В. В. Путин озвучил планы доведения атомной генерации в общем энергобалансе России с 16 % до 20-30 % В разработках проекта Энергетической стратегии России на период до 2030 г. предусмотрено увеличение производства электроэнергии на атомных электростанциях в 4 раза.

19 слайд

Описание слайда:

Атомная энергетика в мире В современном быстроразвивающемся мире вопрос энергопотребления стоит очень остро. Невозобновляемость таких ресурсов как нефть, газ, уголь заставляет задуматься об альтернативных источниках электроэнергии, наиболее реальным из которых сегодня является атомная энергетика. Ее доля в мировой выработке электроэнергии составляет 16%. Больше половины этих 16% приходятся на США (103 энергоблока), Францию и Японию (59 и 54 энергоблока соответственно). Всего (по состоянию на конец 2006 года) в мире действуют 439 ядерных энергоблоков, еще 29 находятся в различных стадиях строительства.

20 слайд

Описание слайда:

Атомная энергетика в мире По оценкам ЦНИИАТОМИНФОРМ, до конца 2030 года в мире будет введено в строй около 570 ГВт АЭС (в первых месяцах 2007 года этот показатель составил около 367 ГВт). В настоящий момент лидером по строительству новых блоков является Китай, который строит 6 энергоблоков. За ним идет Индия с 5 новыми блоками. Замыкает же тройку Россия – 3 блока. Намерения строить новые энергоблоки высказывают также и другие страны, в том числе из бывшего СССР и социалистического блока: Украина, Польша, Белоруссия. Оно и понятно, ведь один ядерный энергоблок сэкономит за год такое количество газа, стоимость которого эквивалентна 350 млн долларов США.

21 слайд

Описание слайда:

22 слайд

Описание слайда:

23 слайд

Описание слайда:

24 слайд

Описание слайда:

Уроки Чернобыля Что произошло на Чернобыльской атомной электростанции 20 лет назад? Из-за действий сотрудников атомной электростанции реактор 4-го энергоблока вышел из-под контроля. Его мощность резко возросла. Графитовая кладка раскалилась добела и деформировалась. Стержни системы управления и защиты не смогли войти в реактор и остановить нарастание температуры. Каналы охлаждения разрушились, вода из них хлынула на раскаленный графит. Давление в реакторе возросло и привело к разрушению реактора и здания энергоблока. При соприкосновении с воздухом сотни тонн раскаленного графита загорелись. Стержни, в которых содержалось топливо и радиоактивные отходы, расплавились, и радиоактивные вещества хлынули в атмосферу.

25 слайд

Описание слайда:

Уроки Чернобыля. Потушить сам реактор было совсем не просто. Это нельзя было делать обычными средствами. Из-за высокой радиации и страшных разрушений невозможно было даже приблизиться к реактору. Горела многотонная графитовая кладка. Ядерное топливо продолжало выделять тепло, а система охлаждения была полностью разрушена взрывом. Температура топлива после взрыва достигала 1500 и более градусов. Материалы, из которых был сделан реактор, при такой температуре спекались с бетоном, ядерным топливом, образовывая неизвестные раньше минералы. Надо было остановить ядерную реакцию, понизить температуру обломков и прекратить выброс радиоактивных веществ в окружающую среду. Для этого шахту реактора с вертолетов забрасывали теплоотводящими и фильтрующими материалами. Это начали делать на второй день после взрыва, 27 апреля. Только через 10 дней, 6 мая, удалось существенно снизить, но не прекратить полностью радиоактивные выбросы

26 слайд

Описание слайда:

Уроки Чернобыля За это время огромное количество радиоактивных веществ, выброшенных из реактора, было разнесено ветрами за многие сотни и тысячи километров от Чернобыля. Там, где радиоактивные вещества выпадали на поверхность земли, образовывались зоны радиоактивного заражения. Люди получали большие дозы радиации, болели и умирали. Первыми умерли от острой лучевой болезни герои-пожарные. Страдали и умирали вертолетчики. Жители окрестных сел и даже удаленных районов, куда ветер принес радиацию, вынуждены были покинуть родные места и стать беженцами. Огромные территории стали непригодны для проживания и для ведения сельского хозяйства. Лес, река, поле все стало радиоактивным, все таило невидимую опасность






























1 из 29

Презентация на тему:

№ слайда 1

Описание слайда:

№ слайда 2

Описание слайда:

№ слайда 3

Описание слайда:

ГидроэлектростанцииЛюди издавна задумывались над тем, как заставить работать реки.Уже в древности – в Египте, Китае, Индии – водяные мельницы для помола зерна появились задолго до ветряных – в государстве Урарту (на территории нынешней Армении), но были известны ещё в XIII в. до н. э.Одними из первых электростанций были «Гидроэлектростанции». Строились эти электростанции на горных реках где довольно сильное течение. Строительство ГЭС позволило сделать судоходными многие реки, так как строение плотин поднимало уровень воды и затапливало речные пороги, которые препятствовали свободному прохождению речных судов.

№ слайда 4

Описание слайда:

Выводы: Для создания напора воды необходима плотина. Однако плотины ГЭС ухудшают условия обитания водяной фауны. Запруженные реки, замедлив течение, зацветают, уходят под воду обширные участки пахотной земли. Населённые пункты (в случае постройки плотины) будут затоплены, ущерб, который будет нанесен, несравним с выгодой строительства ГЭС. Кроме этого необходима система шлюзов для пропускания судов и рыбопропускные или водозаборные сооружения для орошения полей и водоснабжения. И хотя ГЭС имеют немалые преимущества перед тепловыми и атомными электростанциями, так как не нуждаются в топливе и потому вырабатывают более дешевую электроэнергию

№ слайда 5

Описание слайда:

Теплоэлектростанции На тепловых электростанциях источником энергии служит топливо: уголь газ нефть, мазут, горючие сланцы. Коэффициент полезного действия ТЭС достигает 40%. Большая часть энергии теряется вместе с выбросами горячего пара. С экологической точки зрения ТЭС является наиболее загрязняющей. Деятельность тепловых электростанций неотъемлемо связана со сжиганием огромного количества кислорода и образованием углекислого газа и окислов других химических элементов. В соединении с молекулами воды они образуют кислоты, которые в виде кислотных дождей падают нам на головы. Не будем забывать и о "парниковом эффекте" - его влияние на изменение климата наблюдается уже сейчас!

№ слайда 6

Описание слайда:

Атомная электростанцияЗапасы источников энергии ограничены. По разным подсчетам, залежей угля в России при существующем уровне его добычи осталось на 400-500 лет, а газа и того меньше - на 30-60. И здесь на первое место выходит ядерная энергетика. Всё большую роль в энергетике начинают играть атомные электростанции. В настоящее время АЭС нашей страны дают около 15,7% электроэнергии. Атомная электростанция - основа энергетики использующей ядерную энергию для целей электрификации и теплофикации.

№ слайда 7

Описание слайда:

Выводы: Ядерная энергетика основана на делении тяжёлых ядер нейтронами с образованием из каждого двух ядер – осколков и нескольких нейтронов. При этом освобождается колоссальная энергия, которая в последствии расходуется на нагревание пара. Работа любого завода или машины, вообще любая деятельность человека связана с возможностью возникновения риска для здоровья человека и окружающей среды. Как правило, люди с большей опаской относятся к новым технологиям, особенно если они слышали о возможных авариях. И атомные станции - не исключение.

№ слайда 8

Описание слайда:

Ветряные электростанцииУже очень давно, видя, какие разрушения могут приносить бури и ураганы, человек задумался над тем, нельзя ли использовать энергию ветра. Энергия ветра очень велика. Эту энергию можно получать, не загрязняя окружающую среду. Но у ветра есть два существенных недостатка: энергия сильно рассеяна в пространстве и ветер не предсказуем – часто меняет направление, вдруг затихает даже в самых ветреных районах земного шара, а иногда достигает такой силы, что ломает ветряки. Для получения энергии ветра применяют самые разные конструкции: от многолопастной «ромашки» и винтов вроде самолётных пропеллеров с тремя, двумя и даже одной лопастью до вертикальных роторов. Вертикальные конструкции хороши тем, что улавливают ветер любого направления; остальным приходится разворачиваться по ветру.

№ слайда 9

Описание слайда:

Выводы: Строительство, содержание и ремонт ветроустановок, круглосуточно работающих под открытым небом в любую погоду, стоят недёшево. Ветроэлектростанции такой же мощности как ГЭС, ТЭЦ или АЭС, по сравнению с ними должна занимать очень большую площадь, чтобы как-то компенсировать изменчивость ветра. Ветряки ставят так, чтобы они не загораживали друг друга. Поэтому строят огромные «ветряные фермы», в которых ветродвигатели стоят рядами на обширном пространстве и работают на единую сеть. В безветренную погоду такая электростанция может использовать воду набранную в ночное время. Размещение ветряков и водохранилища требуют больших площадей, которые используются под пахоту. К тому же ветроэлектростанции не безвредны: они мешают полётам птиц и насекомых, шумят, отражают радиоволны, вращающимися лопастями, создавая помехи приёму телепередач в близлежащих населённых пунктах.

№ слайда 10

Описание слайда:

Солнечные электростанцииВ тепловом балансе Земли солнечное излучение играет решающую роль. Мощность излучения, падающего на Землю, определяет предельную мощность, которую можно выработать на Земле без существенного нарушения теплового баланса. Интенсивность солнечного излучения и продолжительность солнечного сияния в южных районах страны дают возможность с помощью солнечных батарей получить достаточно высокую температуру рабочего тела для его использования в тепловых установках.

№ слайда 11

Описание слайда:

Выводы: Большая рассеянность энергии и нестабильность её поступления – недостатки солнечной энергетики. Эти недостатки частично компенсируется использованием аккумулирующих устройств, но всё же атмосфера Земли мешает получению и использованию «чистой» солнечной энергии. Для увеличения мощности СЭС необходимо установка большого числа зеркал и солнечных батарей - гелиостатов, которые должны оборудоваться с системой автоматического слежения за положением солнца. Преобразование одного вида энергии в другой неизбежно сопровождается выделением тепла, которое ведёт к перегреванию земной атмосферы.

№ слайда 12

Описание слайда:

Геотермальная энергетикаОколо 4% всех запасов воды на нашей планете сосредоточено под землёй – в толщах горных пород. Воды, температура которых превышает 20 градусов по Цельсию, называют термальными. Нагреваются подземные воды в результате радиоактивных процессов протекающих в недрах земли. Люди научились использовать глубинное тепло Земли в хозяйственных целях. В странах где термальные воды подходят близко к поверхности земли, сооружают геотермальные электростанции (геоТЭС). ГеоТЭС устроены относительно просто: здесь нет котельной, оборудования для подачи топлива, золоуловителей и многих других приспособлений, необходимых для тепловых электростанций. Поскольку топливо у таких электростанций бесплатное, то и себестоимость вырабатываемой электроэнергии низкая.

№ слайда 13

Описание слайда:

Ядерная энергетика Отрасль энергетики, использующая ядерную энергию для электрификации и теплофикации; Область науки и техники, разрабатывающая методы и средства преобразования ядерной энергии в электрическую и тепловую. Основа ядерной энергетики - атомные электростанции. Первая атомная электростанция (5 МВт), положившая начало использованию ядерной энергии в мирных целях, была пущена в СССР в 1954. К началу 90-х гг. в 27 странах мира работало свыше 430 ядерных энергетических реакторов общей мощностью около 340 ГВт. По прогнозам специалистов, доля ядерной энергетики в общей структуре выработки электроэнергии в мире будет непрерывно возрастать при условии реализации основных принципов концепции безопасности атомных электростанций.

№ слайда 14

Описание слайда:

Развитие ядерной энергетики 1942 г. в США под руководством Энрико Ферми был построен первый ядерный реакторФЕРМИ (Fermi) Энрико (1901-54), итальянский физик, один из создателей ядерной и нейтронной физики, основатель научных школ в Италии и США, иностранный член-корреспондент АН СССР (1929). В 1938 эмигрировал в США. Разработал квантовую статистику (статистика Ферми - Дирака; 1925), теорию бета-распада (1934). Открыл (с сотрудниками) искусственную радиоактивность, вызванную нейтронами, замедление нейтронов в веществе (1934). Построил первый ядерный реактор и первым осуществил в нем (2.12.1942) цепную ядерную реакцию. Нобелевская премия (1938).

№ слайда 15

Описание слайда:

Развитие ядерной энергетики1946 г. в Советском Союзе под руководством Игоря Васильевича Курчатова создан первый европейский реактор. КУРЧАТОВ Игорь Васильевич (1902/03-1960), российский физик, организатор и руководитель работ по атомной науке и технике в СССР, академик АН СССР (1943), трижды Герой Социалистического Труда (1949, 1951, 1954).Исследовал сегнетоэлектрики. Совместно с сотрудниками обнаружил ядерную изомерию. Под руководством Курчатова сооружен первый отечественный циклотрон (1939), открыто спонтанное деление ядер урана (1940), разработана противоминная защита кораблей, созданы первый в Европе ядерный реактор (1946), первая в СССР атомная бомба (1949), первые в мире термоядерная бомба (1953) и АЭС (1954).Основатель и первый директор Института атомной энергии (с 1943, с 1960 - имени Курчатова).

© 2024 skudelnica.ru -- Любовь, измена, психология, развод, чувства, ссоры