Уроки по неорганической химии для подготовки к егэ. Классификация и свойства сложных неорганических веществ

Главная / Ссоры

«Классификация и номенклатура неорганических соединений»

Важнейшими классами неорганических соединений являются оксиды, кислоты, основания и соли.

Оксиды – это сложные вещества, состоящие из двух элементов, один из которых кислород в степени окисления (– 2).

При написании формулы оксида символ элемента, образующего оксид, ставится на первое место, а кислорода – на второе. Общая формула оксидов: Эх Оу .

Особую группу кислородных соединений элементов составляют пероксиды. Обычно их рассматривают как соли пероксида водорода Н2 О2 , проявляющего слабые кислотные свойства. У пероксидов атомы кислорода химически связаны не только с атомами других элементов, но и между собой (образуют пероксидную группу – О– О–). Например, пероксид натрия Na2 O2 (Na–O–O–Na), а оксид натрия Na2 O (Na–O–Na). В пероксидах степень окисления кислорода равна (–1). Так, в пероксиде бария BaO2 степень окисления бария равна +2, а кислорода –1.

Названия оксидов

Названия оксидов в соответствии с номенклатурными правилами образуются из слова «оксид» и названия оксидообразующего элемента в родительном падеже, например, СаО – оксид кальция, К2 О – оксид калия.

В случае, когда элемент обладает переменной степенью окисления и образует несколько оксидов, после названия этого элемента указывают его степень окисления римской цифрой в скобках, или прибегают к помощи греческих числительных (1-моно, 2-ди, 3-три, 4-тетра, 5-пента, 6-гекса, 7-гепта, 8-окта). Например,

VO – оксид ванадия (II) или монооксид ванадия;

V2 O3 – оксид ванадия (III) или триоксид диванадия; VO2 – оксид ванадия (IV) или диоксид ванадия; V2 O5 – оксид ванадия (V) или пентаоксид диванадия.

Классификация оксидов

По реакционной способности оксиды можно разделить на солеобразующие и несолеобразующие (безразличные). В свою очередь, солеобразующие оксиды подразделяются на основные, кислотные и амфотерные.

Солеобразующие оксиды

Несолеобразующие

Основные

Кислотные

Амфотерные

Образуют неметаллы с

небольшой степенью

Образуют металлы

Образуют металлы и

Образуют металлы с

окисления

со степенью окисления

неметаллы со

промежуточной

степенью окисления

степенью окисления

Например, NO, CO, N2 O,

Например,

Li2 O, CaO

Например,

Например,

Данная группа оксидов

Mn2 O7 , CrO3

ZnO, Al2 O3 , SnO, BeO,

не проявляет ни

As2 O3 , Fe2 O3

основных, ни кислотных

свойств и не образуют

Основные оксиды. Получение основных оксидов и их химические свойства

Основными называются такие оксиды, которым соответствуют основания. Например, Na2 O, CaO являются основными оксидами, так как им соответствуют основания NaOH, Ca(OH)2 .

Получение основных оксидов

1. Взаимодействие металла с кислородом. Например: 4 Li + O 2 → 2 Li2 O.

2. Разложение при нагревании кислородных соединений: карбонатов, нитратов, оснований. Например:

MgCO3 ¾¾® MgO + CO2 - ;

2Cu(NO3 )2 ¾¾® 2CuO + 4NO2 - + O2 - ;

Ca(OH)2 ¾¾® CaO + H2 O .

Химические свойства основных оксидов

1. Взаимодействие с водой. По отношению к воде основные оксиды делятся на растворимые и нерастворимые. Растворимые – это оксиды щелочных металлов (Li2 O, Na2 O, K2 O, Rb2 O, Cs2 O) и щелочноземельных металлов (CaO,SrO, BaO). Растворяясь в воде, оксиды щелочных и щелочноземельных металлов образуют растворимые в воде основания, называемые щелочами. К нерастворимым в воде относятся оксиды остальных металлов. Например:

Na2 O + H2 O → 2NaOH;

CaO + H2 O → Ca(OH)2 .

2. Основные оксиды взаимодействуют с кислотами, образуя соль и воду. Например: CaO + H2 SO4 → CaSO4 + H2 O

3. Основные оксиды взаимодействуют с кислотными, образуя при этом соль. Например:

СаO + SO3 → CaSO4

Кислотные оксиды. Получение кислотных оксидов и их химические свойства

Кислотными называются такие оксиды, которым соответствуют кислоты. Например, CO2 , P2 O5 , SO3 являются кислотными оксидами, так как им соответствуют кислоты H2 CO3 , H3 PO4 , H2 SO4 .

Получение кислотных оксидов

1. Горение неметалла. Например: S + O 2 → SO2 ;

2. Горение сложных веществ. Например: СН 4 + 2О2 → СО2 + 2 Н2 О;

3. Разложение при нагревании кислородных соединений: карбонатов, нитратов, гидроксидов. Например:

CaCO3 ¾¾® CaO + CO2 - ;

2AgNO3 ¾¾® 2Ag + 2NO2 - + O2 - .

Химические свойства кислотных оксидов

1. Взаимодействие с водой. Большинство кислотных оксидов непосредственно реагируют с водой, образуя при этом кислоту. Исключения составляют лишь оксиды кремния (SiO2 ), теллура (TeO2 , TeO3 ), молибдена и вольфрама (MoO3 , WO3 ). Например:

СO2 + H2 O ↔ Н2 СО3

2. Кислотные оксиды взаимодействуют с основаниями, образуя соль и воду. Например: SO3 + 2 NaOH → Na2 SO4 + H2 O

3. Кислотные оксиды взаимодействуют с основными, образуя при этом соль. Например: 3CaO + P2 O5 → Ca3 (PO4 )2

4. Летучие кислотные оксиды способны вытеснять более летучие из их солей. Например, нелетучий кислотный оксид кремния (IV) вытесняет летучий кислотный оксид СО2 из его соли СaCO3 + SiO2 → CaSiO3 + CO2 - .

Амфотерные оксиды

Амфотерными называются такие оксиды, которые в зависимости от условий проявляют основные или кислотные свойства, то есть обладают двойственными свойствами.

1. Амфотерные оксиды не взаимодействуют с водой.

2. Амфотерные оксиды взаимодействуют с кислотами. Например:

Al2 O3 + 6 HCl → 2 AlCl3 + 3 H2 O

3. Амфотерные оксиды взаимодействуют с основаниями. Например:

Al2 O3 + 2 NaOH ¾¾® 2 NaAlO2 + H2 O Al2 O3 + 2NaOH + 3H2 O ® 2Na

4. Амфотерные оксиды взаимодействуют с основными и кислотными оксидами.

Al2 O3 + 3 SO3 ¾¾® Al2 (SO4 )3

Al2 O3 + Na2 O ¾¾® 2 NaAlO2

Гидроксиды – это сложные многоэлементные химические соединения, в состав которых входят атомы какого-либо элемента, кислорода и водорода. Химический характер гидроксидов определяется свойствами соответствующих им оксидов. Поэтому гидроксиды делятся на три большие группы:

1. Гидраты кислотных оксидов, называемые кислотами, например, H 2 SO4 .

2. Гидраты основных оксидов, называемые основаниями, например, Ba(OH) 2 .

3. Гидраты амфотерных оксидов, называемые амфотерными гидроксидами, например, Be(OH) 2 .

Основания Основания – это электролиты, диссоцирующие в водном растворе с образованием

катиона металла (или иона аммония NH4 + ) и гидроксогруппы ОН– . Названия оснований

Общая формула оснований: Мe(ОН)n . Согласно международной номенклатуре названия оснований составляются из слова гидроксид и названия металла. Например, NaOH – гидроксид натрия, Ca(OH)2 – гидроксид кальция. Если элемент образует несколько оснований, то в названии указывается степень его окисления римской цифрой в скобках: Fe(OH)2 – гидроксид железа (II), Fe(OH)3 – гидроксид железа (III).

Помимо этих названий для некоторых наиболее важных оснований применяются и другие, в основном традиционные русские названия. Например, гидроксид натрия NaOH называют едким натром, гидроксид кальция Ca(OH)2 – гашеной известью, КОН – едким кали.

Число ОН– -групп, содержащихся в молекуле основания, определяет его кислотность. По этому признаку основания делятся на однокислотные (КОН), двухкислотные (Cu(OH)2 ), трехкислотные

(Cr(OH)3 ).

Гидроксиды, растворимые в воде, называют щелочами. Это гидроксиды щелочных и щелочно-

земельных металлов: NaOH, KOH, RbOH, CsOH, Ba(OH)2 , Ca(OH)2 , Sr(OH)2 .

Способы получения щелочей и оснований

1. Растворимые в воде основания (щелочи) получают при взаимодействии щелочных и щелочно-земельных металлов с водой.

2Na + 2Н2 O → 2NaOH + H2 -

2. Растворимые в воде основания (щелочи) получают при взаимодействии оксидов щелочных и щелочно-земельных металлов с водой.

Na2 O + H2 O → 2NaOH

3. Щелочи можно получить электролизом водных растворов соответствующих солей (Например, гидроксид натрия можно получить электролизом раствора соли NaCl).

2 NaCl + 2 H2 O → 2 NaOH + H2 - + Cl2 - Катод: 2 H2 O + 2e– → H2 + 2 OH– Анод: 2 Cl– – 2e – → Cl2

4. Малорастворимые или нерастворимые в воде основания получают путем взаимодействия растворов соответствующих солей с растворами щелочей. Например:

CuSO4 + 2 NaOH → Cu(OH)2 ¯ + Na2 SO4

Химические свойства оснований

Основания в большинстве случаев представляют собой твердые вещества. По отношению к воде их модно разделить на две группы: растворимые в воде – щелочи и нерастворимые в воде. Растворы щелочей мыльные на ощупь. Изменяют окраску индикаторов: лакмуса в синий цвет, фенолфталеина – в малиновый, метилового оранжевого – в желтый цвет.

1. Электролитические свойства оснований. Одно из наиболее характерных свойств оснований – электролитическая способность к диссоциации в жидком состоянии. При диссоциации основания образуется гидроксогруппа ОН– и основной остаток – катион.

Диссоциация оснований, содержащих одну гидроксогруппу ОН– , протекает в одну ступень:

КОН ↔ К+ + ОН– .

Основания, содержащие несколько гидроксогрупп в молекуле, диссоциируют ступенчато, с постепенным отщеплением ионов OH– .

Катион, образующийся после отщепления от молекулы гидроксида одной или несколько гидроксид-ионов, называется основным остатком. Количество основных остатков, соответствующих данному гидроксиду, равно числу гидроксогрупп OH– в составе молекулы гидроксида.

Название основного остатка образуется из русского названия металла в составе остатка с добавлением слова «ион». Если остатки содержат одну или две гидроксогруппы, к названию металла добавляются приставки «гидроксо» или «дигидроксо».

(мыльность на ощупь, изменение цвета индикаторов, взаимодействие с кислотами, кислотными оксидами, солями) обусловлены наличием гидроксид-ионов в их составе.

2. Взаимодействие с кислотами. Это реакция нейтрализации, приводящая к образованию соли

и воды:

2 NaOH + H 2 SO4 → Na2 SO4 + H2 O.

3. Щелочи взаимодействуют с кислотными оксидами:

Ca(OH)2 + CO2 → CaCO3 + H2 O.

4. Щелочи взаимодействуют с растворами солей. Данное взаимодействие осуществляется, если после реакции образуются труднорастворимые или слабые основания. Например:

2 КОН + CuSO 4 → Cu(OH)2 ¯ + K2 SO4 .

5. При нагревании нерастворимые основания разлагаются на оксид и воду. Например:

2 Fe(OH)3 ¾¾® Fe2 O3 + 3 H2 O.

Амфотерные гидроксиды

Амфотерность гидроксидов понимается как способность плохо растворимых гидроксидов металлов проявлять кислотные или основные свойства в зависимости от характера кислотноосновного взаимодействия. Амфотерными являются следующие гидроксиды: Al(OH)3 , Zn(OH)2 , Cr(OH)3 , Be(OH)2 , Ge(OH)2 , Sn(OH)4 , Pb(OH)2 и др.

Формула амфотерного гидроксида, как правило, записывается по формуле основания Ме(ОН)n , но ее можно представить и в виде кислоты Нn MеOm . Например, Zn(OH)2 – гидроксид цинка или H2 ZnO2 – цинковая кислота; Al(OH)3 – гидроксид алюминия или НAlO2 – метаалюминиевая кислота (Н3 AlO3 – ортоалюминиевая кислота).

Химические свойства амфотерных гидроксидов

В силу своей двойственности амфотерные гидроксиды способны реагировать как с кислотами, так и со щелочами.

1. При взаимодействии с сильными кислотами образуются соль и вода; при этом амфотерный гидроксид проявляет основные свойства.

2. При взаимодействии с сильными основаниями (щелочами) образуются соль и вода; при этом амфотерный гидроксид проявляет кислотные свойства и в уравнении должна быть использована его кислотная форма.

H2 ZnO2 + 2 NaOH → Na2 ZnO2 + 2 H2 O

цинкат натрия

НAlO2 + NaOH ¾¾® NaAlO2 + H2 O (сплавление)

метаалюминат натрия 3. С водными растворами щелочей амфотерные гидроксиды образуют комплексные

соединения:

Zn(OH)2 + 2 NaOH → Na2

Амфотерные гидроксиды – нерастворимые соединения. Получение амфотерных гидроксидов возможно лишь косвенно – путем взаимодействия щелочей с солями соответствующих металлов.

Кислоты Кислоты – это электролиты, диссоцирующие в водном растворе с образованием катиона

водорода Н+ и аниона кислотного остатка.

Названия кислот

В общем виде формула кислоты записывается как Нm Э или Нm ЭОn , где Э – кислотообразующий элемент.

По химическому составу, а именно по отсутствию или наличию атомов кислорода в молекулах, кислоты делятся на кислородсодержашие (H2 SO4 , HNO3 ) и бескислородные (H2 S, HF, HCl).

Кислоты имеют традиционные и систематические названия, составляемые по номенклатурным правилам ИЮПАК для сложных соединений.

Традиционное название кислоты складывается из двух слов. Первое слово – прилагательное с корнем от русского названия кислотообразующего элемента, второе – слово «кислота», например, серная кислота, азотная кислота. В названиях кислородосодержащих кислот для обозначения степени окисления кислотообразующего элемента используются следующие суффиксы:

– н, – ов, – ев – (высшая или любая единственная степень окисления), как HClO4 – хлорная, H2 SO4 – серная, HMnO4 – марганцовая кислота; H2 SiO3 – метакремниевая кислота.

новат – (промежуточная степень окисления +5), как HClO 3 – хлорноватая, HIO3 – йодноватая, H2 MnO4 – марганцоватая кислота.

овист, – ист – (промежуточная степень окисления +3, +4), как H 3 AsO3 – ортомышьяковистая

кислота; HClO2 – хлористая; HNO2 – азотистая.

– новатист – (низшая положительная степень +1), как HClO – хлорноватистая.

Если элемент в одной и той же степени окисления образует несколько кислородосодержащих кислот, то к названию кислоты с меньшим содержанием кислородных атомов добавляют префикс «мета», при наибольшем числе – префикс «орто»: НРО3 – метафосфорная кислота, Н3 РО4 – ортофосфорная кислота (степень окисления фосфора равна +5).

Названия бескислородных кислот

производятся от названия неметалла с окончанием «о» и

прибавлением слова водородная:

HF – фтороводородная или плавиковая кислота

HCl – хлороводородная или соляная кислота

Названия кислот и кислотных остатков

Название кислоты

Кислотный остаток

Название

Азотистая

HNO2

NO2 –

Нитрит-ион

HNO3

NO3 –

Нитрат-ион

Ортоборная

H3 BO3

BO3 3–

Ортоборат-ион

Метакремниевая

H2 SiO3

SiO3 2–

Метасиликат-ион

Марганцовая

HMnO4

MnO4 –

Перманганат-ион

Ортомышьяковая

H3 AsO4

AsO4 3–

Ортоарсенат-ион

Ортомышьяковистая

H3 AsO3

AsO3 3–

Ортоарсенит-ион

H2 SO4

SO4 2–

Сульфат-ион

Сернистая

H2 SO3

SO3 2–

Сульфит-ион

Сероводородная

S 2–

Сульфид-ион

Тиосерная

H2 S2 O3

S2 O3 2–

Тиосульфат-ион

Угольная

H2 CO3

CO3 2–

Карбонат-ион

Метафосфорная

НРО3

РО3 –

Метафосфат-ион

Ортофосфорная

Н3 РО4

РО4 3–

Ортофосфат-ион

Двуфосфорная

H4 P2 O7

P2 O7 4–

Дифосфат

(пирофосфорная)

(пирофосфат)

Фосфористая

H3 PO3

PO3 3–

Фосфит-ион

HClO4

ClO4 –

Перхлорат-ион

Хлористая

HClO2

ClO2 –

Хлорит-ион

Хромовая

H2 CrO4

CrO4 2–

Хромат-ион

Хлороводородная

Cl–

Хлорид-ион

Бромоводородная

Br–

Бромид-ион

Иодоводородная

J–

Иодид-ион

Уксусная

СН3 СООН

СН3 СОО–

Ацетат-ион

Циановодородая

CN–

Цианид-ион

Способы получения кислот

1. Взаимодействие кислотного оксида с водой. Например: SO2 + H2 O → H2 SO3

Исключение составляют SiO2 , TeO2 , TeO3 , MoO3 , WO3 , которые с водой не взаимодействуют. 2. Если кислотный оксид не растворим в воде, то соответствующие им кислоты получают

косвенным путем, а именно, действием другой кислоты на соответствующую соль. Например:

Na2 SiO3 + H2 SO4 → Na2 SO4 + H2 SiO3 ↓

3. Бескислородные кислоты получают путем взаимодействия неметаллов с водородом с последующим растворением продуктов в воде. Например:

Н 2(г) + Cl 2(г) → 2 HCl (г)

Химические свойства кислот

Кислоты представляют собой жидкости (Н2 SO4 , HNO3 ) или твердые вещества (H3 PO4 ). Многие кислоты хорошо растворимы в воде. Водные растворы кислот имеют кислый вкус и изменяют цвет индикаторов: лакмусу придают красный цвет, метиловому оранжевому – розовый.

1. Электролитические свойства кислот. Согласно теории электролитической диссоциации кислотами называют вещества, диссоцирующие в водных растворах с образованием ионов водорода Н+ , которыми обусловлены все общие свойства кислот (кислый вкус растворов, окрашивание лакмуса в красный цвет, взаимодействие с металлами и т.д.).

Число ионов водорода кислоты, способных замещаться на катионы металлов, определяет основность этой кислоты и число ступеней диссоциации. Так HCl, H2 SO4 , H3 PO4 – пример одно-, двух- и трехосновных кислот.

Диссоциация одноосновной хлороводородной кислоты HCl происходит в одну ступень: HCl ↔ H+ + Cl–

Ей соответствует один кислотный остаток – хлорид-ион Cl– .

Угольная кислота, являясь двухосновной кислотой, диссоциирует в две ступени с образованием кислотных остатков:

Н2 СО3

↔ Н+

НСО3 –

гидрокарбонат-ион

НСО3 –

↔ Н+

СО3 2–

карбонат-ион

Ортофосфорная кислота Н3 РО4 диссоциирует в три ступени с образованием трех кислотных

остатков:

Н3 РО4 ↔ Н+ + Н2 РО4 –

дигидроортофосфат-ион

Н2 РО4 – ↔ Н+ + НРО4 2–

гидроортофосфат-ион

НРО4 2– ↔ Н+ + РО4 3–

ортофосфат-ион

Если кислотный остаток содержит один водород-ион, то к его названию прибавляется приставка «гидро», если два водородных иона– « дигидро».

2. Взаимодействие с основаниями, в результате образуется соль и вода. HCl + NaOH → NaCl + H2 O

3. Взаимодействие с основными оксидами.

2 HCl + CaO → CaCl 2 + H2 O

4. Взаимодействие с солями. Кислоты вступают в реакцию с солями, если в результате ее

образуется более слабая кислота, малорастворимое или летучее соединение.

H2 SO4 + BaCl2 → BaSO4 ↓ + 2 HCl

4. Взаимодействие кислот с металлами (с образованием соли и выделением водорода).

2 HCl + Fe → FeCl2 + H2 −

Металлы, имеющие стандартный электродный потенциал больше водорода, с кислотами не взаимодействуют. При взаимодействии металлов с концентрированной серной кислотой, концентрированной и разбавленной азотной кислотой водород не выделяется.

Соли Соли – это электролиты, диссоцирующие в водном растворе с образованием катионов

основных остатков и анионов кислотных остатков. Формулы и названия солей

Состав соли описывается формулой, в которой на первое место ставится формула катиона, а на второе – формула аниона. Названия солей образуются от названия кислотного остатка (в именительном падеже) и названия основного остатка (в родительном падеже), входящих в состав соли. Степень окисления металла, образующего катион, указывается римскими цифрами в скобках, если это необходимо. Например, K2 S – сульфид калия, FeSO4 – сульфат железа (II), Fe2 (SO4 )3 – сульфат железа (III).

Анион бескислородной кислоты имеет окончание «ид». Например, FeCl3 – хлорид железа (III). Названия кислых солей образуются также, как и средних, но при этом к названию аниона добавляют приставку «гидро», указывающую на наличие атомов водорода, число которых обозначается греческими числительными: ди, три и.т.д. Например: Fe(HSO4 )3 – гидросульфат

железа (III), NaH2 PO4 – дигидрофосфат натрия.

Названия основных солей образуются также, как и средних, но при этом к названию катиона добавляют приставку «гидроксо», указывающую на наличие гидроксогрупп, число которых обозначается греческими числительными: ди, три и.т.д. Например: (CuOH)2 CO3 – карбонат гидроксомеди (II), Fe(OH)2 Cl – хлорид дигидроксожелеза (III).

Соли подразделяются на средние, кислые и основные.

Средние (нормальные) соли не содержат в молекуле ни атомов водорода, ни гидроксогрупп. Они диссоциируют практически полностью (не ступенчато), образуя катионы металла и анионы кислотного остатка:

K2 S ↔ 2 K+ + S2– AlCl3 ↔ Al3+ + 3 Cl–

Средние соли можно получить при полном замещении атомов водорода в молекулах кислот атомами металлов или при полном замещении гидроксогрупп в основаниях на кислотные остатки. Например:

Zn(OH)2 + H2 SO4 → ZnSO4 + 2 H2 O

Кислые соли – это соли, кислотный остаток которых содержит в своем составе водород, например, KHS, Fe(HSO4 )3 . Такие соли диссоциируют ступенчато. Вначале (по I ступени) происходит полная диссоциация соли на катионы металла и анионы кислотного остатка:

KHS ↔ K+ + HS– (полная диссоциация)

Затем кислотный остаток диссоциирует в меньшей степени (частично), ступенчато отщепляя катионы водорода:

HS– ↔ H+ + S2– (частичная диссоциация)

По своим свойствам кислые соли являются промежуточными соединениями межу средними солями и кислотами. Так же, как кислоты, они обычно хорошо растворимы в воде и способны к реакции нейтрализации.

Кислые соли образуются только многоосновными кислотами в случае неполного замещения атомов водорода в кислоте на атомы металла (избыток кислоты). Например:

NaOH + H2 SO4 → NaHSO4 + H2 O

гидросульфат натрия

Одноосновные кислоты (HCl, HNO3 ) кислых солей не образуют.

Основные соли – это соли, катионы которых содержат одну или несколько гидроксогрупп,

например, (CuOH)2 CO3 , (FeOH)Cl2 .

Основные соли так же, как и кислые, диссоциируют ступенчато. По I ступени идет полная диссоциация на катионы основного остатка и анионы кислотного, а затем идет частичная диссоциация основного остатка. Например, карбонат гидроксомеди (II) полностью диссоциирует по первой ступени:

(CuOH)2 CO3 ↔ 2 CuOH+ + CO3 2– , (полная диссоциация)

затем основный остаток частично диссоциирует как слабый электролит на ионы: CuOH+ ↔ Cu2+ + OH– (частичная диссоциация)

Как правило, основные соли малорастворимы и при нагревании разлагаются с выделением воды.

Основные соли образуются только многокислотными основаниями в случае неполного замещения гидроксогрупп основания на кислотные остатки (избыток основания). Например: Mg(OH)2 + HCl → MgOHCl + H2 O

хлорид гидроксомагния

Получение солей

Средние соли могут быть получены при взаимодействии веществ:

1. металла с неметаллом. Например: Fe + S → FeS

2. металла с кислотой. Например:

Zn + 2 HCl → ZnCl2 + H2 −

3 Zn + 4 H2 SO4(конц.) → 3 ZnSO4 + S + 4 H2 O

3. основного оксида с кислотой. Например: CuO + H2 SO4 → CuSO4 + H2 O

4. кислотного оксида с основаниями. Например: CO 2 + Ca(OH)2 → CaCO3 + H2 O

5. основания с кислотой (реакция нейтрализации). Например: Ca(OH) 2 + 2 HCl → CaCl2 + 2 H2 O

6. двух различных солей. Например:

Na2 SO4 + BaCl2 → BaSO4 ↓ + 2 NaCl

7. щелочей с солями. Например: 3 KOH + FeCl 3 → 3 KCl + Fe(OH)3 ↓

8. вытеснение пассивного металла из раствора его соли более активным металлом (в соответствии с рядом напряжений металлов). Например:

Fe + CuSO4 → FeSO4 + Cu

9. взаимодействием кислотного оксида с основным. Например:

CaO + SiO2 → CaSiO3

Кислые соли могут быть получены:

1. при взаимодействии снования с избытком кислоты или кислотного оксида. Например: Pb(OH)2 + 2 H2 SO4 → Pb(HSO4 )2 + 2 H2 O

Ca(OH)2 + 2 CO2 → Ca(HCO3 )2

2. при взаимодействии средней соли с кислотой, кислотный остаток которой входит в состав этой соли. Например:

PbSO4 + H2 SO4 → Pb(HSO4 )2

Основные соли получаются:

1. при взаимодействии кислоты с избытком основания. Например: HCl + Mg(OH) 2 → MgOHCl + H2 O

2. при взаимодействии средней соли со щелочью:

Bi(NO3 )3 + 2 NaOH → Bi(OH)2 NO3 + 2 NaNO3

Кислые или основные соли образуются при гидролизе средних солей: Na2 CO3 + H2 O → NaHCO3 + NaOH

Al2 (SO4 )3 + H2 O → 2 AlOHSO4 + H2 SO4

Химические свойства солей

1. В ряду стандартных электродных потенциалов каждый предыдущий металл вытесняет последующие из растворов их солей. Например:

Zn + Hg(NO3 )2 → Zn(NO3 )2 + Hg

2. Соли взаимодействуют со щелочами. Например:

CuSO4 + 2 NaOH → Cu(OH)2 ↓ + Na2 SO4

3. Соли взаимодействуют с кислотами: CuSO 4 + H2 S → CuS↓ + H2 SO4

4. Многие соли взаимодействуют между собой:

CaCl2 + Na2 CO3 → CaCO3 ↓ + 2 NaCl

При составлении химический уравнений реакций нужно помнить, что реакция протекает, если один из образующихся продуктов выпадает в виде осадка, выделяется виде газа или представляет собой малодиссоциированное соединение.

Превращение кислых и основных солей в средние

1. Взаимодействие кислой соли с гидроксидом того же металла: KHSO4 + KOH → K2 SO4 + H2 O

2. Взаимодействие кислой соли с солью того же металла, но другой кислоты: KHSO4 + KСl → K2 SO4 + HCl

3. Термическое разложение кислых солей:

Ca(HCO3 )2 → CaCO3 + CO2 − + H2 O

4. Взаимодействие основной соли с соответствующей кислотой: 2 FeOHSO4 + H2 SO4 → Fe2 (SO4 )3 + 2 H2 O

Степень окисления

При классификации различных веществ, составления формул химических соединений и описании их свойств используется характеристика состояния атомов элементов – степень окисления. Степень окисления – это количественная характеристика состояния атома элемента в соединении.

Степень окисления – это условный заряд атома в молекуле химического соединения, вычисленный исходя из предположения, что все молекулы химического соединения состоят из ионов, то есть общие электронные пары переходят к наиболее электроотрицательному элементу.

Степень окисления может быть отрицательным, положительным числом или равняться нулю. Степень окисления обозначают арабскими цифрами со знаком (+) или (–) пред цифрой, и записывают над символом элемента в формуле химического соединения.

Отрицательное значение степени окисления приписывается атому, притянувшему к себе электроны, и его величина, равная числу притянутых электронов, отмечается знаком (–).

Положительное значение степени окисления определяется числом электронов оттянутых от данного атома, и отмечается знаком (+).

При вычислении степеней окисления атомов используется следующая совокупность правил:

1) в молекулах простых веществ степень окисления атома равна нулю;

2) водород в соединениях с неметаллами имеет степень окисления (+1), исключение составляют гидриды, в которых степень окисления водорода равна (–1);

3) кислород во всех сложных соединениях имеет степень окисления (–2), кроме OF2 и различных перекисных соединений.

4) фтор, как наиболее электроотрицательный элемент, во всех соединениях имеет степень окисления (–1);

5) галогены в соединениях с водородом и металлами проявляют отрицательную степень окисления (–1), а с кислородом – положительную, за исключением фтора.

6) все металла в своих соединениях характеризуются только положительными степенями окисления, в том числе щелочные металлы имеют степень окисления (+1), а щелочно-земельные –

7) сумма степеней окисления всех атомов в молекуле равна нулю, сумма степеней окисления всех атомов в сложном ионе равна заряду этого иона.

Классификация неорганических веществ и их номенклатура основаны на наиболее простой и постоянной во времени характеристике -

химическом составе , который показывает атомы элементов, образующих данное вещество, в их числовом отношении. Если вещество из атомов одного химического элемента, т.е. является формой существования этого элемента в свободном виде, то его называют простым веществом ; если же вещество из атомов двух или большего числа элементов, то его называют сложным веществом . Все простые вещества (кроме одноатомных) и все сложные вещества принято называть химическими соединениями , так как в них атомы одного или разных элементов соединены между собой химическими связями.

Номенклатура неорганических веществ состоит из формул и названий. Химическая формула - изображение состава вещества с помощью символов химических элементов, числовых индексов и некоторых других знаков. Химическое название - изображение состава вещества с помощью слова или группы слов. Построение химических формул и названий определяется системой номенклатурных правил .

Символы и наименования химических элементов приведены в Периодической системе элементов Д.И. Менделеева. Элементы условно делят на металлы

и неметаллы . К неметаллам относят все элементы VIIIА-группы (благородные газы) и VIIА-группы (галогены), элементы VIА-группы (кроме полония), элементы азот, фосфор, мышьяк (VА-группа); углерод, кремний (IVА-группа); бор (IIIА-группа), а также водород. Остальные элементы относят к металлам.

При составлении названий веществ обычно применяют русские наименования элементов, например, дикислород, дифторид ксенона, селенат калия. По традиции для некоторых элементов в производные термины вводят корни их латинских наименований:

Ag - аргент

N - нитр

As - арс, арсен

Ni - никкол

Au - аур

O - окс, оксиген

C - карб, карбон

Pb - плюмб

Cu - купр

S - сульф

Fe - ферр

Sb - стиб

H - гидр, гидроген

Si - сил, силик, силиц

Hg - меркур

Sn - станн

Mn - манган

Например

: карбонат, манганат, оксид, сульфид, силикат.

Названия простых веществ состоят из одного слова - наименования химического элемента с числовой приставкой, например:

Используются следующие числовые приставки

:

1 - моно

7 - гепта

2 - ди

3 - три

9 - нона

4 - тетра

5 - пента

11 - ундека

6 - гекса

12 - додека

Неопределенное число указывается числовой приставкой

n - поли.

Для некоторых простых веществ используют также специальные названия, такие, как О

3 - озон, Р 4 - белый фосфор.

Химические формулы сложных веществ составляют из обозначения электроположительной (условных и реальных катионов) и электроотрицательной (условных и реальных анионов) составляющих, например,

CuSO 4 (здесь Cu 2+ - реальный катион, SO 4 2- - реальный анион) и PCl 3 (здесь P +III - условный катион, Cl - I - условный анион).

Названия сложных веществ составляют по химическим формулам справа налево. Они складываются из двух слов - названий электроотрицательных составляющих (в именительном падеже) и электроположительных составляющих (в родительном падеже), например:

CuSO 4 - сульфат меди(II)
PCl 3 - трихлорид фосфора
LaCl 3 - хлорид лантана(III)
СО - монооксид углерода

Число электроположительных и электроотрицательных составляющих в названиях указывают числовыми приставками, приведенными выше (универсальный способ), либо степенями окисления (если они могут быть определены по формуле) с помощью римских цифр в круглых скобках (знак плюс опускается). В ряде случаев приводят заряд ионов (для сложных по составу катионов и анионов), используя арабские цифры с соответствующим знаком.

Для распространенных многоэлементных катионов и анионов применяют следующие специальные названия:

H 2 F + - фтороний

C 2 2- - ацетиленид

H 3 O + - оксоний

CN - - цианид

H 3 S + - сульфоний

CNO - - фульминат

NH 4 + - аммоний

HF 2 - - гидродифторид

N 2 H 5 + - гидразиний(1+)

HO 2 - - гидропероксид

N 2 H 6 + - гидразиний(2+)

HS - - гидросульфид

NH 3 OH + - гидроксиламиний

N 3 - - азид

NO + - нитрозил

NCS - - тиоционат

NO 2 + - нитроил

O 2 2 - - пероксид

O 2 + - диоксигенил

O 2 - - надпероксид

PH 4 + - фосфоний

O 3 - - озонид

VO 2 + - ванадил

OCN - - цианат

UO 2 + - уранил

OH - - гидроксид

Для небольшого числа хорошо известных веществ также используют специальные названия:

AsH 3 - арсин

HN 3 - азидоводород

B 2 H 6 - боран

H 2 S - сероводород

B 4 H 10 - тетраборан(10)

NH 3 - аммиак

HCN - циановодород

N 2 H 4 - гидразин

HCl - хлороводород

NH 2 OH - гидроксиламин

HF - фтороводород

PH 3 - фосфин

HI - иодоводород

SiH 4 - силан

Гидроксиды - тип сложных веществ, в состав которых входят атомы некоторого элемента Е (кроме фтора и кислорода) и гидроксогруппы ОН; общая формула гидроксидов Е(ОН)

n , где n = 1÷6. Форма гидроксидов Е(ОН) n называется орто -формой; при n > 2 гидроксид может находиться также в мета -форме, включающей кроме атомов Е и групп ОН еще атомы кислорода О, например Е(ОН) 3 и ЕО(ОН), Е(ОН) 4 и Е(ОН) 6 и ЕО 2 (ОН) 2 .

Гидроксиды делят на две противоположные по химическим свойствам группы: кислотные и основные гидроксиды.

Кислотные гидроксиды содержат атомы водорода, которые могут замещаться на атомы металла при соблюдении правила стехиометрической валентности. Большинство кислотных гидроксидов находится в мета -форме, причем атомы водорода в формулах кислотных гидроксидов ставят на первое место, например

H 2 SO 4 , HNO 3 и H 2 CO 3 , а не SO 2 (OH) 2 , NO 2 (OH) и CO(OH) 2 . Общая формула кислотных гидроксидов - Н х ЕО у , где электроотрицательную составляющую ЕО у х- называют кислотным остатком. Если не все атомы водорода замещены на металл, то они остаются в составе кислотного остатка.

Названия распространенных кислотных гидроксидов состоят из двух слов: собственного названия с окончанием “ая” и группового слова “кислота”. Приведем формулы и собственные названия распространенных кислотных гидроксидов и их кислотных остатков (прочерк означает, что гидроксид не известен в свободном виде или в кислом водном растворе):

кислотный гидроксид

кислотный остаток

HAsO 2 - метамышьяковистая

AsO 2 - - метаарсенит

H 3 AsO 3 - ортомышьяковистая

AsO 3 3- - ортоарсенит

H 3 AsO 4 - мышьяковая

AsO 4 3- - арсенат

4 О 7 2- - тетраборат
iО 3 - - висмутат

HBrO - бромноватистая

BrO - - гипобромит

HBrO 3 - бромноватая

BrO 3 - - бромат

H 2 CO 3 - угольная

CO 3 2- - карбонат

HClO - хлорноватистая

ClO - - гипохлорит

HClO 2 - хлористая

ClO 2 - - хлорит

HClO 3 - хлорноватая

ClO 3 - - хлорат

HClO 4 - хлорная

ClO 4 - - перхлорат

H 2 CrO 4 - хромовая

CrO 4 2- - хромат

CrO 4 - - гидрохромат

H 2 Cr 2 О 7 - дихромовая

Cr 2 O 7 2- - дихромат

FeO 4 2- - феррат

HIO 3 - иодноватая

IO 3 - - иодат

HIO 4 - метаиодная

IO 4 - - метапериодат

H 5 IO 6 - ортоиодная

IO 6 5- - ортопериодат

HMnO 4 - марганцовая

MnO 4 - - перманганат

MnO 4 2- - манганат

Mо O 4 2- - молибдат

HNO 2 - азотистая

NO 2 - - нитрит

HNO 3 - азотная

NO 3 - - нитрат

HPO 3 - метафосфорная

PO 3 - - метафосфат

H 3 PO 4 - ортофосфорная

PO 4 3- - ортофосфат

PO 4 2- - гидроортофосфат
2 PO 4 - - дигидроотофосфат

H 4 P 2 O 7 - дифосфорная

P 2 O 7 4- - дифосфат

ReO 4 - - перренат

SO 3 2- - сульфит

HSO 3 - - гидросульфит

H 2 SO 4 - серная

SO 4 2- - сульфат

SO 4 - - гидросульфат

H 2 S 2 O 7 - дисерная

S 2 O 7 2- - дисульфат

H 2 S 2 O 6 (O 2) - пероксодисерная

S 2 O 6 (O 2) 2- - пероксодисульфат

H 2 SO 3 S - тиосерная

SO 3 S 2- - тиосульфат

H 2 SeO 3 - селенистая

SeO 3 2- - селенит

H 2 SeO 4 - селеновая

SeO 4 2- - селенат

H 2 SiO 3 - метакремниевая

SiO 3 2- - метасиликат

H 4 SiO 4 - ортокремниевая

SiO 4 4- - ортосиликат

H 2 TeO 3 - теллуристая

TeO 3 2- - теллурит

H 2 TeO 4 - метателлуровая

TeO 4 2- - метателлурат

H 6 TeO 6 - ортотеллуровая

TeO 6 6- - ортотеллурат

VO 3 - - метаванадат

VO 4 3- - ортованадат

WO 4 3- - вольфрамат

Менее распространенные кислотные гидроксиды называют по номенклатурным правилам для комплексных соединений, например:

Названия кислотных остатков используют при построении названий солей.

Основные гидроксиды содержат гидроксид-ионы, которые могут замещаться на кислотные остатки при соблюдении правила стехиометрической валентности. Все основные гидроксиды находятся в орто -форме; их общая формула М(ОН)

n , где n = 1,2 (реже 3,4) и М n +- катион металла. Примеры формул и названий основных гидроксидов:

Важнейшим химическим свойством основных и кислотных гидроксидов является их взаимодействие их между собой с образованием солей (реакция солеобразования ), например:

Ca(OH) 2 + H 2 SO 4 = CaSO 4 + 2H 2 O

Ca(OH) 2 + 2H 2 SO 4 = Ca(HSO 4) 2 + 2H 2 O

2Ca(OH) 2 + H 2 SO 4 = Ca 2 SO 4 (OH) 2 + 2H 2 O

Соли - тип сложных веществ, в состав которых входят катионы М

n + и кислотные остатки*.

Соли с общей формулой М х (ЕО у

) n называют средними солями, а соли с незамещенными атомами водорода, - кислыми солями. Иногда соли содержат в своем составе также гидроксид - или(и) оксид - ионы; такие соли называют основными солями. Приведем примеры и названия солей:

- ортофосфат кальция

- дигидроортофосфат кальция

- гидроортофосфат кальция

Карбонат меди(II)

Cu 2 CO 3 (OH) 2

- дигидроксид-карбонат димеди

Нитрат лантана(III)

- оксид-динитрат титана

Кислые и основные соли могут быть превращены в средние соли взаимодействием с соответствующим основным и кислотным гидроксидом, например:

Ca(HSO 4) 2 + Ca(OH) = CaSO 4 + 2H 2 O

Ca 2 SO 4 (OH) 2 + H 2 SO 4 = 2CaSO 4 + 2H 2 O

Встречаются также соли, содерхащие два разных катиона: их часто называют двойными солями , например:

Оксиды Е х О у

- продукты полной дегидратации гидроксидов:

Кислотным гидроксидам

(H 2 SO 4 , H 2 CO 3) отвечают кислотные оксиды (SO 3 , CO 2), а основным гидроксидам (NaOH, Ca(OH) 2) - основные оксиды (Na 2 O, CaO), причем степень окисления элемента Е не изменяется при переходе от гидроксида к оксиду. Пример формул и названий оксидов:

Кислотные и основные оксиды сохраняют солеобразующие свойства соответствующих гидроксидов при взаимодействии с противоположными по свойствам гидроксидами или между собой:

N 2 O 5 + 2NaOH = 2NaNO 3 + H 2 O

3CaO + 2H 3 PO 4 = Ca 3 (PO 4) 2 + 3H 2 O

La 2 O 3 + 3SO 3 = La 2 (SO 4) 3

Амфотерность

гидроксидов и оксидов - химическое свойство, заключающееся в образовании ими двух рядов солей, например, для гидроксида и оксида алюминия:

(а ) 2Al(OH) 3 + 3SO 3 = Al 2 (SO 4) 3 + 3H 2 O

Al 2 O 3 + 3H 2 SO 4 = Al 2 (SO 4) 3 + 3H 2 O

(б ) 2Al(OH) 3 + Na 2 O = 2NaAlO 2 + 3H 2 O

Al 2 O 3 + 2NaOH = 2NaAlO 2 + H 2 O

Так, гидроксид и оксид алюминия в реакциях (а) проявляют свойства основных гидроксидов и оксидов, т.е. реагируют с кислотными гидроксидам и оксидом, образуя соответствующую соль - сульфат алюминия

Al 2 (SO 4) 3 , тогда как в реакциях (б) они же проявляют свойства кислотных гидроксидов и оксидов, т.е. реагируют с основными гидроксидом и оксидом, образуя соль - диоксоалюминат (III) натрия NaAlO 2 . В первом случае элемент алюминий проявляет свойство металла и входит в состав электроположительной составляющей (Al 3+ ), во втором - свойство неметалла и входит в состав электроотрицательной составляющей формулы соли (AlO 2 - ).

Если указанные реакции протекают в водном растворе, то состав образующихся солей меняется, но присутствие алюминия в катионе и анионе остаётся:

2Al(OH) 3 + 3H 2 SO 4 = 2 (SO 4) 3

Al(OH) 3 + NaOH = Na

Здесь квадратными скобками выделены комплексные ионы

3+ - катион гексаакваалюминия(III) , - - тетрагидроксоалюминат(III)-ион.

Элементы, проявляющие в соединениях металлические и неметаллические свойства, называют амфотерными, к ним относятся элементы А-групп Периодической системы -

Be, Al, Ga, Ge, Sn, Pb, Sb, Bi, Po и др., а также большинство элементов Б-групп - Cr, Mn, Fe, Zn, Cd, Au и др. Амфотерные оксиды называют так же, как и основные, например:

Амфотерные гидроксиды (если степень окисления элемента превышает +

II) могут находиться в орто - или (и) мета - форме. Приведем примеры амфотерных гидроксидов:

Амфотерным оксидам не всегда соответствуют амфотерные гидроксиды, поскольку при попытке получения последних образуются гидратированные оксиды, например:

Если амфотерному элементу в соединениях отвечает несколько степеней окисления, то амфотерность соответствующих оксидов и гидроксидов (а следовательно, и амфотерность самого элемента) будет выражена по-разному. Для низких степеней окисления у гидроксидов и оксидов наблюдается преобладание основных свойств, а у самого элемента - металлических свойств, поэтому он почти всегда входит в состав катионов. Для высоких степеней окисления, напротив, у гидроксидов и оксидов наблюдается преобладание кислотных свойств, а у самого элемента - неметаллических свойств, поэтому он почти всегда входит в состав анионов. Так, у оксида и гидроксида марганца(

II) доминируют основные свойства, а сам марганец входит в состав катионов типа [ Mn(H 2 O) 6 ] 2+ , тогда как у оксида и гидроксида марганца(VII) доминируют кислотные свойства, а сам марганец входит в состав аниона типа MnO 4 - . Амфотерным гидроксидам с большим преобладанием кислотных свойств приписывают формулы и названия по образцу кислотных гидроксидов, например Н Mn VII O 4 - марганцовая кислота.

Таким образом, деление элементов на металлы и неметаллы - условное; между элементами (

Na, K, Ca, Ba и др.) с чисто металлическими и элементами (F, O, N, Cl, S, C и др.) с чисто неметаллическими свойствами существует большая группа элементов с амфотерными свойствами.

Обширный тип неорганических сложных веществ - бинарные соединения. К ним относятся, в первую очередь все двухэлементные соединения (кроме основных, кислотных и амфотерных оксидов), например

H 2 O, KBr, H 2 S, Cs 2 (S 2), N 2 O, NH 3 , HN 3 , CaC 2 , SiH 4 . Электроположительная и электроотрицательная составляющие формул этих соединений включают отдельные атомы или связанные группы атомов одного элемента.

Многоэлементные вещества, в формулах которых одна из составляющих содержит не связанные между собой атомы нескольких элементов, а также одноэлементные или многоэлементные группы атомов (кроме гидроксидов и солей), рассматривают как бинарные соединения, например

CSO, IO 2 F 3 , SBrO 2 F, CrO(O 2) 2 , PSI 3 , (CaTi)O 3 , (FeCu)S 2 , Hg(CN) 2 , (PF 3) 2 O, VCl 2 (NH 2 ). Так, CSO можно представить как соединение CS 2 , в котором один атом серы заменен на атом кислорода.

Названия бинарных соединений строятся по обычным номенклатурным правилам, например:

OF 2 - дифторид кислорода

K 2 O 2 - пероксид калия

HgCl 2 - хлорид ртути(II)

Na 2 S - сульфид натрия

Hg 2 Cl 2 - дихлорид диртути

Mg 3 N 2 - нитрид магния

SBr 2 O - оксид-дибромид серы

NH 4 Br - бромид аммония

N 2 O - оксид диазота

Pb(N 3) 2 - азид свинца(II)

NO 2 - диоксид азота

CaC 2 - ацетиленид кальция

Для некоторых бинарных соединений используют специальные названия, список которых был приведен ранее.

Химические свойства бинарных соединений довольно разнообразны, поэтому их часто разделяют на группы по названию анионов, т.е. отдельно рассматривают галогениды, халькогениды, нитриды, карбиды, гидриды и т. д. Среди бинарных соединений встречаются и такие, которые имеют некоторые признаки других типов неорганических веществ. Так, соединения

CO, NO, NO 2 , и (Fe II Fe 2 III)O 4 , названия которых строятся с применением слова оксид, к типу оксидов (кислотных, основных, амфотерных) отнесены быть не могут. Монооксид углерода СО, монооксид азота NO и диоксид азота NO 2 не имеют соответствующих кислотных гидроксидов (хотя эти оксиды образованы неметаллами С и N), не образуют они и солей, в состав анионов которых входили бы атомы С II , N II и N IV . Двойной оксид (Fe II Fe 2 III)O 4 - оксид дижелеза(III)-железа(II) хотя и содержит в составе электроположительной составляющей атомы амфотерного элемента - железа, но в двух разных степенях окисления, вследствие чего при взаимодействии с кислотными гидроксидами образует не одну, а две разные соли.

Такие бинарные соединения, как

AgF, KBr, Na 2 S, Ba(HS) 2 , NaCN, NH 4 Cl, и Pb(N 3) 2 , построены, подобно солям, из реальных катионов и анионов, поэтому их называют солеобразными бинарными соединениями (или просто солями). Их можно рассматривать как продукты замещения атомов водорода в соединениях Н F, Н Cl, Н Br, Н 2 S, Н CN и Н N 3 . Последние в водном растворе обладают кислотной функцией, и поэтому их растворы называют кислотами, например Н F(aqua) - фтороводородная кислота, Н 2 S(aqua) - сероводородная кислота. Однако они не принадлежат к типу кислотных гидроксидов, а их производные - к солям в рамках классификации неорганических веществ.

В настоящее время известно более 118 химических элементов: по различным источникам, в природе встречаются от 88 до 94. Химические элементы образуют огромное количество неорганических соединений. Хотя каждому соединению присущи свои особенности, свои специфические свойства, имеется целый ряд веществ с некоторыми сходными, общими свойствами. Исходя из общности свойств, соединения объединяют в группы, классы, то есть классифицируют их, что облегчает изучение многообразия веществ.

Вспомним, что, исходя их состава молекул, вещества делятся на простые и сложные.

Простые вещества – вещества, молекулы которых состоят из атомов одного вида (атомов одного элемента). В химических реакциях не могут разлагаться с образованием других веществ.

Сложные вещества (или химические соединения) – вещества, молекулы которых состоят из атомов разного вида (атомов различных химических элементов). В химических реакциях разлагаются с образованием нескольких других веществ.

Простые вещества разбиваются на две большие группы: металлы и неметаллы.

Металлы – группа элементов, обладающая характернымиметаллическими свойствами: твёрдые вещества (исключение составляет ртуть) имеют металлический блеск, являются хорошими проводниками теплоты и электричества, ковкие (железо (Fe), медь (Cu), алюминий (Al), ртуть (Hg), золото (Au), серебро (Ag) и др.).

Неметаллы – группа элементов: твёрдые, жидкие (бром) и газообразные веществ, которые не обладают металлическим блеском, являются изоляторы, хрупкие.

А сложные вещества в свою очередь подразделятся на четыре группы, или класса: оксиды, основания, кислоты и соли.

Оксиды – это сложные вещества, в состав молекул которых входят атомы кислорода и какого – нибудь другого вещества.

Основания – это сложные вещества, в которых атомы металлов соединены с одной или несколькими гидроксильными группами.

С точки зрения теории электролитической диссоциации, основания – сложные вещества, при диссоциации которых в водном растворе образуются катионы металла (или NH 4 +) и гидроксид – анионы OH - .

Кислоты – это сложные вещества, в состав молекул которых входят атомы водорода, способные замещаться или обмениваться на атомы металла.

Соли – это сложные вещества, молекулы которых состоят из атомов металлов и кислотных остатков. Соль представляет собой продукт частичного или полного замещения атомов водорода кислоты металлом.

Остались вопросы? Хотите знать больше о классификации неорганических соединений?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

И их производные. Все остальные вещества - неорганические.

Классификация неорганических веществ
Неорганические вещества по составу делят на простые и сложные.

Простые вещества состоят из атомов одного химического элемента и подразделяются на металлы, неметаллы, благородные газы. Сложные вещества состоят из атомов разных элементов, химически связанных друг с другом.

Сложные неорганические вещества по составу и свойствам распределяют по следующим важнейшим классам: оксиды, основания , кислоты, амфотерные гндроксиды, соли.

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

© 2024 skudelnica.ru -- Любовь, измена, психология, развод, чувства, ссоры