Ионная связь. Как образуется ионная связь: примеры Ионный тип химической связи примеры

Главная / Измена

Ионная связь

Теория химической связи занимает важнейшее место в современной химии . Она объясняет, почему атомы объединяются в химические частицы , и позволяет сравнивать устойчивость этих частиц . Используя теорию химической связи , можно предсказать состав и строение различных соединений . Понятие о разрыве одних химических связей и образовании других лежит в основе современных представлений о превращениях веществ в ходе химических реакций .

Химическая связь - это взаимодействие атомов , обусловливающее устойчивость химической частицы или кристалла как целого . Химическая связь образуется за счет электростатического взаимодействия между заряженными частицами : катионами и анионами, ядрами и электронами . При сближении атомов начинают действовать силы притяжения между ядром одного атома и электронами другого, а также силы отталкивания между ядрами и между электронами . На некотором расстоянии эти силы уравновешивают друг друга , и образуется устойчивая химическая частица .

При образовании химической связи может произойти существенное перераспределение электронной плотности атомов в соединении по сравнению со свободными атомами .

В предельном случае это приводит к образованию заряженных частиц - ионов (от греческого "ион" - идущий).

1 Взаимодействие ионов

Если атом теряет один или несколько электронов , то он превращается в положительный ион - катион (в переводе с греческого – «идущий вниз »). Так образуются катионы водорода Н + , лития Li + , бария Ва 2+ . Приобретая электроны, атомы превращаются в отрицательные ионы - анионы (от греческого "анион" - идущий вверх ). Примерами анионов являются фторид ион F − , сульфид-ион S 2− .

Катионы и анионы способны притягиваться друг к другу . При этом возникает химическая связь , и образуются химические соединения . Такой тип химической связи называется ионной связью :

2 Определение Ионной связи

Ионная связь - это химическая связь, образованная за счет электростатического притяжения между катионами и анионами .

Механизм образования ионной связи можно рассмотреть на примере реакции между натрием и хлором . Атом щелочного металла легко теряет электрон , а атом галогена - приобретает . В результате этого возникает катион натрия и хлорид-ион . Они образуют соединение за счет электростатического притяжения между ними .

Взаимодействие между катионами и анионами не зависит от направления , поэтому о ионной связи говорят как о ненаправленной . Каждый катион может притягивать любое число анионов , и наоборот . Вот почему ионная связь является ненасыщенной . Число взаимодействий между ионами в твердом состоянии ограничивается лишь размерами кристалла . Поэтому "молекулой " ионного соединения следует считать весь кристалл .

Для возникновения ионной связи необходимо , чтобы сумма значений энергии ионизации E i (для образования катиона) и сродства к электрону A e (для образования аниона) должна быть энергетически выгодной . Это ограничивает образование ионной связи атомами активных металлов (элементы IA- и IIA-групп, некоторые элементы IIIA-группы и некоторые переходные элементы) и активных неметаллов (галогены, халькогены, азот).

Идеальной ионной связи практически не существует . Даже в тех соединениях, которые обычно относят к ионным , не происходит полного перехода электронов от одного атома к другому ; электроны частично остаются в общем пользовании . Так, связь во фториде лития на 80% ионная , а на 20% - ковалентная . Поэтому правильнее говорить о степени ионности (полярности ) ковалентной химической связи . Считают, что при разности электроотрицательностей элементов 2,1 связь является на 50% ионной . При большей разности соединение можно считать ионным .

Ионной моделью химической связи широко пользуются для описания свойств многих веществ , в первую очередь, соединений щелочных и щелочноземельных металлов с неметаллами . Это обусловлено простотой описания таких соединений : считают, что они построены из несжимаемых заряженных сфер , отвечающих катионам и анионам . При этом ионы стремятся расположиться таким образом, чтобы силы притяжения между ними были максимальными, а силы отталкивания - минимальными.

Ионная связь - прочная химическая связь, образующаяся между атомами с большой разностью (>1,7 по шкале Полинга) электроотрицательностей , при которой общая электронная пара полностью переходит к атому с большей электроотрицательностью. Это притяжение ионов как разноименно заряженных тел. Примером может служить соединение CsF, в котором «степень ионности» составляет 97 %.

Ионная связь - крайний случай поляризации ковалентной полярной связи . Образуется между типичными металлом и неметаллом . При этом электроны у металла полностью переходят к неметаллу . Образуются ионы.

Если химическая связь образуется между атомами, которые имеют очень большую разность электроотрицательностей (ЭО > 1.7 по Полингу) , то общая электронная пара полностью переходит к атому с большей ЭО . Результатом этого является образование соединения противоположно заряженных ионов :

Между образовавшимися ионами возникает электростатическое притяжение , которое называется ионной связью . Вернее, такой взгляд удобен . На деле ионная связь между атомами в чистом виде не реализуется нигде или почти нигде , обычно на деле связь носит частично ионный , и частично ковалентный характер . В то же время связь сложных молекулярных ионов часто может считаться чисто ионной . Важнейшие отличия ионной связи от других типов химической связи заключаются в ненаправленности и ненасыщаемости . Именно поэтому кристаллы, образованные за счёт ионной связи, тяготеют к различным плотнейшим упаковкам соответствующих ионов.

3 Ионные радиусы

В простой электростатической модели ионной связи используется понятие ионных радиусов . Сумма радиусов соседних катиона и аниона должна равняться соответстующему межъядерному расстоянию :

r 0 = r + + r

При этом остается неясным , где следует провести границу между катионом и анионом . Сегодня известно , что чисто ионной связи не существует , так как всегда имеется некоторое перекрывание электронных облаков . Для вычисления радиусов ионов используют методы исследования , которые позволяют определять электронную плотность между двумя атомами . Межъядерное расстояние делят в точке , где электронная плотность минимальна .

Размеры иона зависят от многих факторов . При постоянном заряде иона с ростом порядкового номера (а, следовательно, заряда ядра ) ионный радиус уменьшается . Это особенно хорошо заметно в ряду лантаноидов , где ионные радиусы монотонно меняются от 117 пм для (La 3+) до 100 пм (Lu 3+) при координационном числе 6 . Этот эффект носит название лантаноидного сжатия .

В группах элементов ионные радиусы в целом увеличиваются с ростом порядкового номера . Однако для d -элементов четвертого и пятого периодов вследствие лантаноидного сжатия может произойти даже уменьшение ионного радиуса (например, от 73 пм у Zr 4+ до 72 пм у Hf 4+ при координационном числе 4).

В периоде происходит заметно уменьшение ионного радиуса , связанное с усилением притяжения электронов к ядру при одновременном росте заряда ядра и заряда самого иона : 116 пм у Na + , 86 пм у Mg 2+ , 68 пм у Al 3+ (координационное число 6). По этой же причине увеличение заряда иона приводит к уменьшению ионного радиуса для одного элемента : Fe 2+ 77 пм, Fe 3+ 63 пм, Fe 6+ 39 пм (координационное число 4).

Сравнение ионных радиусов можно проводить только при одинаковом координационном числе , поскольку оно оказывает влияние на размер иона из-за сил отталкивания между противоионами . Это хорошо видно на примере иона Ag + ; его ионных радиус равен 81, 114 и 129 пм для координационных чисел 2, 4 и 6 , соответственно .

Структура идеального ионного соединения , обусловленная максимальным притяжением между разноименными ионами и минимальным отталкиванием одноименных ионов , во многом определяется соотношением ионных радиусов катионов и анионов . Это можно показать простыми геометрическими построениями.

4 Энергия ионной связи

Энергия связ и для ионного соединения - это энергия , которая выделяется при его образовании из бесконечно удаленных друг от друга газообразных противоионов . Рассмотрение только электростатических сил соответствует около 90% от общей энергии взаимодействия , которая включает также вклад неэлектростатических сил (например, отталкивание электронных оболочек ).

При возникновении ионной связи между двумя свободными ионами энергия их притяжения определяется законом Кулона :

E(прит.) = q+ q− / (4π r ε),

где q+ и q− - заряды взаимодействующих ионов , r - расстояние между ними , ε - диэлектрическая проницаемость среды .

Так как один из зарядов отрицателен , то значение энергии также будет отрицательным .

Согласно закону Кулона , на бесконечно малых расстояниях энергия притяжения должна стать бесконечно большой . Однако этого не происходит , так как ионы не являются точечными зарядами . При сближении ионов между ними возникают силы отталкивания , обусловленные взаимодействием электронных облаков . Энергия отталкивания ионов описывается уравнением Борна :

Е(отт.) = В / rn,

где В - некоторая константа , n может принимать значения от 5 до 12 (зависит от размера ионов ). Общая энергия определяется суммой энергий притяжения и отталкивания :

Е = Е(прит.) + Е(отт.)

Её значение проходит через минимум . Координаты точки минимума отвечают равновесному расстоянию r 0 и равновесной энергии взаимодействия между ионами E 0 :

E0 = q+ q− (1 - 1 / n) / (4π r0 ε)

В кристаллической решетке всегда имеет место большее число взаимодействий , чем между парой ионов . Это число определяется в первую очередь типом кристаллической решетки . Для учета всех взаимодействий (ослабевающих с увеличением расстояния) в выражение для энергии ионной кристаллической решетки вводят так называемую константу Маделунга А :

E(прит.) = A q+ q− / (4π r ε)

Значение константы Маделунга определяется только геометрией решетки и не зависит от радиуса и заряда ионов . Например, для хлорида натрия она равна 1,74756 .

5 поляризация ионов

Помимо величины заряда и радиуса важной характеристикой иона являются его поляризационные свойства . Рассмотрим этот вопрос несколько подробнее. У неполярных частиц (атомов, ионов, молекул) центры тяжести положительных и отрицательных зарядов совпадают . В электрическом поле происходит смещение электронных оболочек в направлении положительно заряженной пластины , а ядер - в направлении отрицательно заряженной пластины . Вследствие деформации частицы в ней возникает диполь , она становится полярной .

Источником электрического поля в соединениях с ионным типом связи являются сами ионы . Поэтому, говоря о поляризационных свойствах иона , необходимо различать поляризующее действие данного иона и способность его самого поляризоваться в электрическом поле .

Поляризующее действие иона будет тем большим , чем больше его силовое поле , т. е. чем больше заряд и меньше радиус иона . Поэтому в пределах подгрупп в Периодической системе элементов поляризующее действие ионов понижается сверху вниз , так как в подгруппах при постоянной величине заряда иона сверху вниз увеличивается его радиус .

Поэтому поляризующее действие ионов щелочных металлов например растет от цезия к литию , а в ряду галогенид-ионов - от I к F . В периодах поляризующее действие ионов растет слева направо вместе с увеличением заряда иона и уменьшением его радиуса .

Поляризуемость иона , способность его к деформации растут с уменьшением силового поля , т. е. с уменьшением величины заряда и увеличением радиуса . Поляризуемость анионов обычно выше , чем катионов и в ряду галогенидов растет от F к I .

На поляризационные свойства катионов оказывает влияние характер их внешней электронной оболочки . Поляризационные свойства катионов как в активном , так и в пассивном смысле при одинаковом заряде и близком радиусе растут при переходе от катионов с заполненной оболочкой к катионам с незаконченной внешней оболочкой и далее к катионам с 18-электронной оболочкой .

Например, в ряду катионов Mg 2+ , Ni 2+ , Zn 2+ поляризационные свойства усиливаются . Эта закономерность согласуется с изменением в приведенном в ряду радиуса иона и строения его электронной оболочки:

Для анионов поляризационные свойства ухудшаются в такой последовательности:

I - , Br - , Cl - , CN - , OH - , NO 3 - , F - , ClO 4 - .

Результатом поляризационного взаимодействия ионов является деформация их электронных оболочек и, как следствие этого, сокращение межионных расстояний и неполное разделение отрицательного и положительного зарядов между ионами.

Например, в кристалле хлорида натрия величина заряда на ионе натрия составляет +0,9 , а на ионе хлора - 0,9 вместо ожидаемой единицы . В молекуле KCl , находящейся в парообразном состоянии , величина зарядов на ионах калия и хлора составляет 0,83 единицы заряда , а в молекуле хлороводорода - лишь 0,17 единицы заряда.

Поляризация ионов оказывает заметное влияние на свойства соединений с ионной связью , понижая их температуры плавления и кипения , уменьшая электролитическую диссоциацию в растворах и расплавах и др .

Ионные соединения образуются при взаимодействии элементов , значительно различающихся по химическим свойствам . Чем больше удалены друг от друга элементы в периодической системе , тем в большей степени проявляется в их соединениях ионная связь . Напротив , в молекулах, образованных одинаковыми атомами или атомами элементов, близких по химическим свойствам , возникают другие типы связи . Поэтому теория ионной связи имеет ограниченное применение .

6 Влияние поляризации ионов на свойства веществ и свойства Ионной связи и ионных соединений

Представления о поляризации ионов помогают объяснить различия в свойствах многих однотипных веществ . Например, сравнение хлоридов натрия и калия с хлоридом серебра показывает, что при близких ионных радиусах

поляризуемость катиона Ag+ , имеющего 18-электронную внешнюю оболочку , выше , что приводит к увеличению прочности связи металл-хлор и меньшей растворимости хлорида серебра в воде .

Взаимная поляризация ионов облегчает разрушение кристаллов , что приводит к понижению температур плавления веществ . По этой причине температура плавления TlF (327 oС) существенно ниже , чем RbF (798 oC). Температура разложения веществ также понижатся с усилением взаимной поляризации ионов . Поэтому иодиды обычно разлагаются при более низких температурах , чем остальные галогениды , а соединения лития - термически менее устойчивы , чем соединения других щелочных элементов .

Деформируемость электронных оболочек сказывается и на оптических свойствах веществ . Чем более поляризована частица , тем ниже энергия электронных переходов . Если поляризация мала , возбуждение электронов требует более высокой энергии , что отвечает ультрафиолетовой части спектра . Такие вещества обычно бесцветны . В случае сильной поляризации ионов возбуждение электронов происходит при поглощении электромагнитного излучения видимой области спектра . Поэтому некоторые вещества , образованные бесцветными ионами, окрашены .

Характеристикой ионных соединений служит хорошая растворимость в полярных растворителях (вода, кислоты и т. д.) . Это происходит из-за заряженности частей молекулы . При этом диполи растворителя притягиваются к заряженным концам молекулы , и, в результате Броуновского движения , «растаскивают » молекулу вещества на части и окружают их , не давая соединиться вновь . В итоге получаются ионы окружённые диполями растворителя .

При растворении подобных соединений, как правило, выделяется энергия , так как суммарная энергия образованных связей растворитель-ион больше энергии связи анион-катион . Исключения составляют многие соли азотной кислоты (нитраты) , которые при растворении поглощают тепло (растворы охлаждаются ). Последний факт объясняется на основе законов, которые рассматриваются в физической химии .

7 Кристаллическая решётка

Ионные соединения (например, хлорид натрия NaCl) - твердые и тугоплавкие от того, что между зарядами их ионов ("+" и "–") существуют мощные силы электростатического притяжения .

Отрицательно заряженный ион хлора притягивает не только "свой " ион Na+ , но и другие ионы натрия вокруг себя . Это приводит к тому , что около любого из ионов находится не один ион с противоположным знаком , а несколько (рис. 1).

Рис. 1. Строение кристалла поваренной соли NaCl .

Фактически, около каждого иона хлора располагается 6 ионов натрия , а около каждого иона натрия - 6 ионов хлора .

Такая упорядоченная упаковка ионов называется ионным кристаллом . Если в кристалле выделить отдельный атом хлора , то среди окружающих его атомов натрия уже невозможно найти тот , с которым хлор вступал в реакцию . Притянутые друг к другу электростатическими силами , ионы крайне неохотно меняют свое местоположение под влиянием внешнего усилия или повышения температуры . Но если температура очень велика (примерно 1500°C ), то NaCl испаряется , образуя двухатомные молекулы . Это говорит о том, что силы ковалентного связывания никогда не выключаются полностью .

Ионные кристаллы отличаются высокими темпертурами плавления , обычно значительной шириной запрещенной зоны , обладают ионной проводимостью при высоких температурах и рядом специфических оптических свойств (например, прозрачностью в ближней области ИК спектра ). Они могут быть построены как из одноатомных , так и из многоатомных ионов . Пример ионных кристаллов первого типа - кристаллы галогенидов щелочных и щелочно-земельных металлов ; анионы располагаются по закону плотнейшей шаровой упаковки или плотной шаровой кладки , катионы занимают соответствующие пустоты . Наиболее характерные структуры такого типа - NaCl, CsCl, CaF2. Ионные кристаллы второго типа построены из одноатомных катионов тех же металлов и конечных или бесконечных анионных фрагментов . Конечные анионы (кислотные остатки) - NO3-, SO42-, СО32- и др . Кислотные остатки могут соединяться в бесконечные цепи , слои или образовывать трехмерный каркас , в полостях которого располагаются катионы , как, например, в кристаллических структурах силикатов . Для ионных кристаллов можно рассчитать энергию кристаллической структуры U (см. табл.), приближенно равную энтальпии сублимации ; результаты хорошо согласуются с экспериментальными данными . Согласно уравнению Борна-Майера , для кристалла , состоящего из формально однозарядных ионов :

U = -A/R + Ве-R/r - C/R6 - D/R8 + E0

(R - кратчайшее межионное расстояние , А - константа Маделунга , зависящая от геометрии структуры , В и r - параметры , описывающие отталкивание между частицами , C/R6 и D/R8 характеризуют соответствующие диполь-дипольное и диполь-квадрупольное взаимодействие ионов , E 0 - энергия нулевых колебаний , е - заряд электрона ). С укрупнением катиона возрастает вклад диполь-дипольных взаимодействий .

Все химические соединения образуются посредством образования химической связи. И в зависимости от типа соединяющихся частиц различают несколько видов. Самые основные – это ковалентная полярная, ковалентная неполярная, металлическая и ионная. Сегодня речь пойдет об ионной.

Вконтакте

Что такое ионы

Она образуется между двумя атомами – как правило, при условии, что разница электроотрицательностей между ними очень велика. Электроотрицательность атомов и ионов оценивается по шкале Поллинга.

Поэтому для того чтобы правильно рассматривать характеристики соединений, было введено понятие ионности. Эта характеристика позволяет определить на сколько процентов конкретная связь представляет именно ионную.

Соединение с максимальной ионностью это фторид цезия, в котором она составляет примерно 97%. Ионная связь характерна для веществ, образованных атомами металлов, располагающихся в первой и второй группе таблицы Д.И. Менделеева, и атомами неметаллов, находящихся в шестой и седьмой группах этой же таблицы.

Обратите внимание! Стоит заметить, что не существует соединения, в котором взаимосвязь исключительно ионная. Для открытых на данный момент элементов нельзя добиться настолько большой разницы в электроотрицательности, чтобы получить 100%-ное ионное соединение. Поэтому определение ионной связи не совсем корректно, так как реально рассматриваются соединения с частичным ионным взаимодействием.

Зачем же ввели этот термин, если реально такого явления не существует? Дело в том, что этот подход помог объяснить многие нюансы в свойствах солей, оксидов и других веществ. Например, почему они хорошо растворимы в воде, а их растворы способны проводить электрический ток . Это невозможно объяснить ни с каких других позиций.

Механизм образования

Образование ионной связи возможно только при соблюдении двух условий: если атом металла, участвующий в реакции, способен легко отдать электроны, находящиеся на последнем энергетическом уровне, а атом неметалла способен эти электроны принять. Атомы металлов по своей природе являются восстановителями, то есть способны к отдаче электронов .

Это связано с тем, что на последнем энергетическом уровне в металле могут находится от одного до трех электронов, а радиус самой частицы достаточно большой. Поэтому сила взаимодействия ядра с электронами на последнем уровне настолько мала, что они могут легко уходить с него. С неметаллами ситуация совершенно иная. Они имеют маленький радиус , а количество собственных электронов на последнем уровне может быть от трех и до семи.

И взаимодействие между ними и положительным ядром достаточно сильная, но любой атом стремится к завершению энергетического уровня, поэтому атомы неметалла стремятся получить недостающие электроны.

И когда встречаются два атома – металла и неметалла, происходит переход электронов от атома металла к атому неметалла, при этом образуется химическое взаимодействие.

Схема соединения

На рисунке наглядно видно, как именно осуществляется образование ионной связи. Изначально существуют нейтрально заряженные атомы натрия и хлора.

Первый имеет один электрон на последнем энергетическом уровне, второй семь. Далее происходит переход электрона от натрия к хлору и образование двух ионов. Которые соединяются между собой с образованием вещества. Что такое ион? Ион – это заряженная частица, в которой количество протонов не равно количеству электронов .

Отличия от ковалентного типа

Ионная связь за счет своей специфичности не имеет направленности. Это связано с тем, что электрическое поле иона представляет собой сферу, при том оно убывает или возрастает в одном направлении равномерно, подчиняясь одному и тому же закону.

В отличие от ковалентной, которая образуется за счет перекрывания электронных облаков.

Второе отличие заключается в том, что ковалентная связь насыщенна . Что это значит? Количество электронных облаков, которые могут принимать участие в взаимодействии ограниченно.

А в ионной за счет того, что электрическое поле имеет сферическую форму, оно может соединяться с неограниченным количеством ионов. А значит, можно говорить о том, что она не насыщена.

Также она может характеризоваться еще несколькими свойствами:

  1. Энергия связи – это количественная характеристика, и она зависит от количества энергии, которое необходимо затратить на ее разрыв. Она зависит от двух критериев – длины связи и заряда ионов , участвующих в ее образовании. Связь тем прочнее, чем короче ее длина и больше заряды ионов, ее формирующих.
  2. Длина – этот критерий уже упоминался в предыдущем пункте. Он зависит исключительно от радиуса частиц, участвующих в образовании соединения. Радиус атомов изменяется следующим образом: уменьшается по периоду при увеличении порядкового номера и увеличивается в группе.

Вещества с ионной связью

Она характерна для значительного числа химических соединений. Это большая часть всех солей, в том числе и всем известная поваренная соль. Она встречается во всех соединениях, где есть непосредственный контакт между металлом и неметаллом . Вот некоторые примеры веществ с ионной связью:

  • хлориды натрия и калия,
  • фторид цезия,
  • оксид магния.

Также она может проявляться и в сложных соединениях.

Например, сульфат магния.

Перед вами формула вещества с ионной и ковалентной связью:

Между ионами кислорода и магния будет образовываться ионная связь, а вот сера и соединены между собой уже с помощью ковалентной полярной.

Из чего можно сделать вывод, что ионная связь характерна для сложных химических соединений.

Что такое ионная связь в химии

Виды химической связи — ионная, ковалентная, металлическая

Вывод

Свойства напрямую зависят от устройства кристаллической решетки . Поэтому все соединения с ионной связью хорошо растворимы в воде и других полярных растворителях, проводят и являются диэлектриками. При этом довольно тугоплавки и хрупки. Свойства этих веществ довольно часто применяются в устройстве электрических приборов.

Ионы – это атомы, потерявшие или получившие электроны и, как следствие, некоторый заряд. Для начала хотелось бы напомнить, что ионы бывают двух типов: катионы (положительный заряд ядра больше, чем количество электронов, несущих отрицательный заряд) и анионы (заряд ядра меньше количества электронов). Ионная связь образуется в результате взаимодействия двух ионов с разноименными зарядами.

Ионная и ковалентная связь

Данный тип связи является частным случаем ковалентной. Разность электроотрицательностей в данном случае столь велика (более чем 1,7 по Полингу), что общая пара электронов не частично смещается, а полностью переходит к атому с большей электроотрицательностью. Поэтому образование ионной связи является результатом возникновения сильного электростатического взаимодействия между ионами. Важно понимать, что не существует стопроцентно ионной связи. Данный термин применяется, если «ионные признаки» более выражены (т.е. электронная пара сильно смещена к более электроотрицательному атому).

Механизм ионной связи

Атомы, имеющие практически полную или практически пустую валентную (внешнюю) оболочку, наиболее охотно вступают в химические реакции. Чем меньше пустых орбиталей на валентной оболочке, тем выше шанс, что атом получит электроны извне. И наоборот – чем меньше электронов находится на внешней оболочке, тем вероятнее, что атом отдаст электрон.

Электроотрицательность

Это способность атома притягивать к себе электроны, поэтому атомы с наиболее заполненными валентными оболочками более электроотрицательны.

Типичный металл охотно отдает электроны, тогда как типичный неметалл охотнее их забирает. Поэтому чаще всего ионную связь образуют металлы и неметаллы. Отдельно следует упомянуть другой тип ионной связи – молекулярную . Ее особенность в том, что в роли ионов выступают не отдельные атомы, а целые молекулы.

Схема ионной связи

На рисунке схематически изображено формирование фторида натрия. Натрий имеет низкую электроотрицательность и всего один электрон на валентной оболочке (ВО). Фтор – значительно более высокую электроотрицательность, ему не хватает всего одного электрона для заполнения ВО. Электрон с ВО натрия, переходит на ВО фтора, заполняя орбиталь, в следствии чего оба атома приобретают разноименные заряды и притягиваются друг к другу.

Свойства ионной связи

Ионная связь достаточно сильна – разрушить ее при помощи тепловой энергии крайне сложно, а потому вещества с ионной связью имеют высокую температуру плавления . В то же время радиус взаимодействия ионов достаточно низкий, что обуславливает ломкость подобных соединений. Важнейшими ее свойствами являются ненаправленность и ненасыщаемость . Ненаправленность происходит из формы электрического поля иона, которое представляет собой сферу и способно взаимодействовать с катионами или анионами во всех направлениях. При этом поля двух ионов не компенсируются полностью, вследствие чего они вынуждены притягивать к себе дополнительные ионы, образуя кристалл, – это и есть явление, называемое ненасыщаемостью. В ионных кристаллах нет молекул, а отдельные катионы и анионы окружены множеством ионов противоположного знака, количество которых зависит в основном от положения атомов в пространстве.

Кристаллы поваренной соли (NaCl) – типичный пример ионной связи.

Ионная связь

(использованы материалы сайта http://www.hemi.nsu.ru/ucheb138.htm)

Ионная связь осуществляется путем электростатического притяжения между противоположно заряженными ионами. Эти ионы образуются в результате перехода электронов от одного атома к другому. Ионная связь образуется между атомами, имеющими большие различия электроотрицательностей (обычно больше 1,7 по шкале Полинга), например, между атомами щелочных металлов и галогенов.

Рассмотрим возникновение ионной связи на примере образования NaCl.

Из электронных формул атомов

Na 1s 2 2s 2 2p 6 3s 1 и

Cl 1s 2 2s 2 2p 6 3s 2 3p 5

видно, что для завершения внешнего уровня атому натрия легче отдать один электрон, чем присоединить семь, а атому хлора легче присоединить один, чем отдать семь. В химических реакциях атом натрия отдает один электрон, а атом хлора принимает его. В результате электронные оболочки атомов натрия и хлора превращаются в устойчивые электронные оболочки благородных газов (электронная конфигурация катиона натрия

Na + 1s 2 2s 2 2p 6 ,

а электронная конфигурация аниона хлора

Cl – - 1s 2 2s 2 2p 6 3s 2 3p 6).

Электростатическое взаимодействие ионов приводит к образованию молекулы NaCl.

Характер химической связи часто находит отражение в агрегатном состоянии и физических свойствах вещества. Такие ионные соединения, как хлорид натрия NaCl твердые и тугоплавкие потому, что между зарядами их ионов "+" и "–" существуют мощные силы электростатического притяжения.

Отрицательно заряженный ион хлора притягивает не только "свой" ион Na+, но и другие ионы натрия вокруг себя. Это приводит к тому, что около любого из ионов находится не один ион с противоположным знаком, а несколько.

Строение кристалла поваренной соли NaCl.

Фактически, около каждого иона хлора располагается 6 ионов натрия, а около каждого иона натрия - 6 ионов хлора. Такая упорядоченная упаковка ионов называется ионным кристаллом. Если в кристалле выделить отдельный атом хлора, то среди окружающих его атомов натрия уже невозможно найти тот, с которым хлор вступал в реакцию.

Притянутые друг к другу электростатическими силами, ионы крайне неохотно меняют свое местоположение под влиянием внешнего усилия или повышения температуры. Но если хлорид натрия расплавить и продолжать нагревать в вакууме, то он испаряется, образуя двухатомные молекулы NaCl . Это говорит о том, что силы ковалентного связывания никогда не выключаются полностью.

Основные характеристики ионной связи и свойства ионных соединений

1. Ионная связь является прочной химической связью. Энергия этой связи составляет величины порядка 300 – 700 кДж/моль.

2. В отличие от ковалентной связи, ионная связь является ненаправленной, поскольку ион может притягивать к себе ионы противоположного знака в любом направлении.

3. В отличие от ковалентной связи, ионная связь является ненасыщенной, так как взаимодействие ионов противоположного знака не приводит к полной взаимной компенсации их силовых полей.

4. В процессе образования молекул с ионной связью не происходит полной передачи электронов, поэтому стопроцентной ионной связи в природе не существует. В молекуле NaCl химическая связь лишь на 80% ионная.

5. Соединения с ионной связью – это твердые кристаллические вещества, имеющие высокие температуры плавления и кипения.

6. Большинство ионных соединений растворяются в воде. Растворы и расплавы ионных соединений проводят электрический ток.

Металлическая связь

По-другому устроены металлические кристаллы. Если рассмотреть кусочек металлического натрия, то обнаружится, что внешне он сильно отличается от поваренной соли. Натрий - мягкий металл, легко режется ножом, расплющивается молотком, его можно без труда расплавить в чашечке на спиртовке (температура плавления 97,8 о С). В кристалле натрия каждый атом окружен восемью другими такими же атомами.

Строение кристалла металлического Na.

Из рисунка видно, что атом Na в центре куба имеет 8 ближайших соседей. Но это же можно сказать и о любом другом атоме в кристалле, поскольку все они одинаковы. Кристалл состоит из "бесконечно" повторяющихся фрагментов, изображенных на этом рисунке.

Атомы металлов на внешнем энергетическом уровне содержат небольшое число валентных электронов. Поскольку энергия ионизации атомов металлов невелика, валентные электроны слабо удерживаются в этих атомах. В результате в кристаллической решетке металлов появляются положительно заряженные ионы и свободные электроны. При этом катионы металла находятся в узлах кристаллической решетки, а электроны свободно перемещаются в поле положительных центров образуя так называемый «электронный газ».

Наличие между двумя катионами отрицательно заряженного электрона приводит тому, что каждый катион взаимодействует с этим электроном.

Таким образом, металлическая связь – это связь между положительными ионами в кристаллах металлов, которая осуществляется путем притяжения электронов, свободно перемещающихся по всему кристаллу.

Поскольку валентные электроны в металле равномерно распределены по всему кристаллу металлическая связь, как и ионная, является ненаправленной связью. В отличие от ковалентной связи, металлическая связь является ненасыщенной связью. От ковалентной связи металлическая связь отличается также и прочностью. Энергия металлической связи примерно в три – четыре раза меньше энергии ковалентной связи.

Вследствие большой подвижности электронного газа металлы характеризуются высокой электро- и теплопроводностью.

Металлический кристалл выглядит достаточно простым, но на самом деле его электронное устройство сложнее, чем у кристаллов ионных солей. На внешней электронной оболочке элементов-металлов недостаточно электронов для образования полноценной "октетной" ковалентной или ионной связи. Поэтому в газообразном состоянии большинство металлов состоит из одноатомных молекул, (т.е. отдельных, не связанных между собой атомов). Типичный пример - пары ртути. Таким образом, металлическая связь между атомами металлов возникает только в жидком и твердом агрегатном состоянии.

Описать металлическую связь можно следующим образом: часть атомов металла в образующемся кристалле отдают в пространство между атомами свои валентные электроны (у натрия это...3s1), превращаясь в ионы. Поскольку все атомы металла в кристалле одинаковы, каждый из них имеет равные с другими шансы потерять валентный электрон.

Иными словами, переход электронов между нейтральными и ионизированными атомами металла происходит без затрат энергии. Часть электронов при этом всегда оказывается в пространстве между атомами в виде "электронного газа".

Эти свободные электроны, во-первых, удерживают атомы металла на определенном равновесном расстоянии друг от друга.

Во-вторых, они придают металлам характерный "металлический блеск" (свободные электроны могут взаимодействовать с квантами света).

В-третьих, свободные электроны обеспечивают металлам хорошую электропроводность. Высокая теплопроводность металлов тоже объясняется наличием свободных электронов в межатомном пространстве - они легко "откликаются" на изменения энергии и способствуют ее быстрому переносу в кристалле.

Упрощенная модель электронного строения металлического кристалла.

******** На примере металла натрия рассмотрим природу металлической связи с точки зрения представлений об атомных орбиталях. У атома натрия, как и у многих других металлов, имеется недостаток валентных электронов, зато имеются свободные валентные орбитали. Единственный 3s-электрон натрия способен перемещаться на любую из свободных и близких по энергии соседних орбиталей. При сближении атомов в кристалле внешние орбитали соседних атомов перекрываются, благодаря чему отданные электроны свободно перемещаются по всему кристаллу.

Однако "электронный газ" вовсе не беспорядочен, как может показаться. Свободные электроны в металлическом кристалле находятся на перекрывающихся орбиталях и в какой-то мере обобществляются, образуя подобие ковалентных связей. У натрия, калия, рубидия и других металлических s-элементов обобществленных электронов просто мало, поэтому их кристаллы непрочные и легкоплавкие. С увеличением числа валентных электронов прочность металлов, как правило, возрастает.

Таким образом, металлическую связь склонны образовывать элементы, атомы которых на внешних оболочках имеют мало валентных электронов. Эти валентные электроны, осуществляющие металлическую связь, обобществлены настолько, что могут перемещаться по всему металлическому кристаллу и обеспечивают высокую электропроводность металла.

Кристалл NaCl не проводит электрический ток, потому что в пространстве между ионами нет свободных электронов. Все электроны, отданные атомами натрия, прочно удерживают около себя ионы хлора. В этом одно из существенных отличий ионных кристаллов от металлических.

То, что вы теперь знаете о металлической связи, позволяет объяснить и высокую ковкость (пластичность) большинства металлов. Металл можно расплющить в тонкий лист, вытянуть в проволоку. Дело в том, что отдельные слои из атомов в кристалле металла могут относительно легко скользить один по другому: подвижный "электронный газ" постоянно смягчает перемещение отдельных положительных ионов, экранируя их друг от друга.

Разумеется, ничего подобного нельзя сделать с поваренной солью, хотя соль - тоже кристаллическое вещество. В ионных кристаллах валентные электроны прочно связаны с ядром атома. Сдвиг одного слоя ионов относительно другого приводит к сближению ионов одинакового заряда и вызывает сильное отталкивание между ними, в результате чего происходит разрушение кристалла (NaCl - хрупкое вещество).


Сдвиг слоев ионного кристалла вызывает появление больших сил отталкивания между одноименными ионами и разрушение кристалла.

Навигация

  • Решение комбинированных задач на основе количественных характеристик вещества
  • Решение задач. Закон постоянства состава веществ. Вычисления с использованием понятий «молярная масса» и «химическое количество» вещества

Wikimedia Foundation . 2010 .

Смотреть что такое "Ионная химическая связь" в других словарях:

    Связь между атомами в молекуле или мол. соединении, возникающая в результате либо переноса эл на с одного атома на другой, либо обобществления эл нов парой (или группой) атомов. Силы, приводящие к X. с., кулоновские, однако X. с. описать в рамках … Физическая энциклопедия

    ХИМИЧЕСКАЯ СВЯЗЬ - взаимодействие атомов, при котором электроны, принадлежащие двум разным атомам (группам), становятся общими (обобществлёнными) для обоих атомов (групп), обусловливая их соединение в молекулы и кристаллы. Различают два основных типа X. с.: ионная… … Большая политехническая энциклопедия

    ХИМИЧЕСКАЯ СВЯЗЬ, механизм, за счет которого атомы соединяются и образуют молекулы. Имеется несколько типов такой связи, основанных либо на притяжении противоположных зарядов, либо на образовании устойчивых конфигураций путем обмена электронами.… … Научно-технический энциклопедический словарь

    Химическая связь - ХИМИЧЕСКАЯ СВЯЗЬ, взаимодействие атомов, обусловливающее их соединение в молекулы и кристаллы. Действующие при образовании химической связи силы имеют в основном электрическую природу. Образование химической связи сопровождается перестройкой… … Иллюстрированный энциклопедический словарь

    - … Википедия

    Взаимное притяжение атомов, приводящее к образованию молекул и кристаллов. Принято говорить, что в молекуле или в кристалле между соседними атомами существуют Х. с. Валентность атома (о чём подробнее сказано ниже) показывает число связей … Большая советская энциклопедия

    химическая связь - взаимное притяжение атомов, приводящее к образованию молекул и кристаллов. Валентность атома показывает число связей, образованных данным атомом с соседними. Термин «химическое строение» ввел академик А. М. Бутлеров в… … Энциклопедический словарь по металлургии

    Взаимодействие атомов, обусловливающее их соединение в молекулы и кристаллы. Это взаимодействие приводит к уменьшению полной энергии образующейся молекулы или кристалла по сравнению с энергией невзаимодействующих атомов и основано на… … Большой энциклопедический политехнический словарь

    Ковалентная связь на примере молекулы метана: законченный внешний энергетический уровень у водорода (H) 2 электрона, а у углерода (C) 8 электронов. Ковалентная связь связь, образованная направленными валентными электронными облаками. Нейтральные… … Википедия

    Химическая связь явление взаимодействия атомов, обусловленное перекрыванием электронных облаков, связывающихся частиц, которое сопровождается уменьшением полной энергии системы. Термин «химическое строение» впервые ввёл А. М. Бутлеров в 1861… … Википедия

© 2024 skudelnica.ru -- Любовь, измена, психология, развод, чувства, ссоры