Ch химический элемент название. Названия химических элементов

Главная / Измена мужа

    См. также: Список химических элементов по атомным номерам и Алфавитный список химических элементов Содержание 1 Символы, используемые в данный момент … Википедия

    См. также: Список химических элементов по символам и Алфавитный список химических элементов Это список химических элементов, упорядоченный в порядке возрастания атомных номеров. В таблице приводятся название элемента, символ, группа и период в… … Википедия

    - (ИСО 4217) Коды для представления валют и фондов Codes for the representation of currencies and funds (англ.) Codes pour la représentation des monnaies et types de fonds (фр.) … Википедия

    Простейшая форма материи, которая может быть идентифицирована химическими методами. Это составные части простых и сложных веществ, представляющие собой совокупность атомов с одинаковым зарядом ядра. Заряд ядра атома определяется числом протонов в … Энциклопедия Кольера

    Содержание 1 Эпоха палеолита 2 10 е тысячелетие до н. э. 3 9 е тысячелетие до н. э … Википедия

    Содержание 1 Эпоха палеолита 2 10 е тысячелетие до н. э. 3 9 е тысячелетие до н. э … Википедия

    У этого термина существуют и другие значения, см. Русские (значения). Русские … Википедия

    Терминология 1: : dw Номер дня недели. «1» соответствует понедельнику Определения термина из разных документов: dw DUT Разность между московским и всемирным координированным временем, выраженная целым количеством часов Определения термина из… … Словарь-справочник терминов нормативно-технической документации

Как получают свои названия химические элементы?

Восемь химических элементов, а именно – серебро, золото, олово, медь, железо, свинец, сера и ртуть – известны человеку еще с доисторических времен, и названия свои получили тогда же. Названия элементов, которые были открыты в XVII – XIX столетиях, за редким исключением, в европейских языках имеют одну языковую основу.

Названия химических элементов образовываются в соответствии с четырьмя принципами.

Первый принцип названия химических элементов – по их характерным свойствам. Например, актиний – активный, барий – тяжелый, йод – фиолетовый, ксенон – чуждый, неон – новый, радий и радон – излучающий, рубидий – темно-красный, фосфор – светящийся, хром – цветной. Сюда же стоит отнести технеций. Название этого элемента отражает его искусственное получение: в 1936 году очень малые количества технеция были синтезированы при облучении в циклотроне молибдена ядрами дейтерия. Слово «технос» в переводе с греческого и означает «искусственный». Этот принцип был впервые использован в 1669 году с открытием фосфора.

Второй принцип – по природному источнику. Бериллий получил свое название от минерала берилл, вольфрам (на английском языке «тангстен») – от одноименного металла, кальций и калий – от арабского названия золы, литий – от слова lithos, имеющего греческое происхождение, и означающего «камень», никель – от одноименного названия минерала, цирконий – от минерала циркон.

Третий принцип – по названиям небесных объектов или по именам героев мифов и древних богов. К химическим элементам, получившим свое название таким путем, относятся гелий, нептуний, плутоний, прометий, селен, титан, торий, уран. Название кобальт произошло от имени злого духа металлургов и рудокопов – Кобольда. Этот принцип, как и предыдущий, появились примерно через сто лет после применения первого, с открытием вольфрама, никеля, а затем урана и теллура.

Принцип четвертый – по названию местности, где был открыт элемент. Сюда относятся америций, европий, германий, франций, галлий, калифорний, стронций и другие. Этот способ наименования химических элементов обязан своим появлением открытию иттрия в 1794 году. Наибольшее число подобных названий связано со Швецией, ведь именно здесь было открыто 20 химических элементов. По имени одного лишь городка Иттербю, возле которого был обнаружен минерал бастнезит в 1788 году, названы четыре элемента: иттербий, иттрий, тербий и эрбий. Кроме того, сюда же нужно добавить гольмий, наименование которого произошло от латинского названия Стокгольма, а также скандий, который получил свое название в честь Скандинавии.

4 принципа названия химических элемента. Картинки со ссылками.

Классификация неорганических веществ и их номенклатура основаны на наиболее простой и постоянной во времени характеристике - химическом составе , который показывает атомы элементов, образующих данное вещество, в их числовом отношении. Если вещество из атомов одного химического элемента, т.е. является формой существования этого элемента в свободном виде, то его называют простым веществом ; если же вещество из атомов двух или большего числа элементов, то его называют сложным веществом . Все простые вещества (кроме одноатомных) и все сложные вещества принято называть химическими соединениями , так как в них атомы одного или разных элементов соединены между собой химическими связями.

Номенклатура неорганических веществ состоит из формул и названий. Химическая формула - изображение состава вещества с помощью символов химических элементов, числовых индексов и некоторых других знаков. Химическое название - изображение состава вещества с помощью слова или группы слов. Построение химических формул и названий определяется системой номенклатурных правил .

Символы и наименования химических элементов приведены в Периодической системе элементов Д.И. Менделеева. Элементы условно делят на металлы инеметаллы . К неметаллам относят все элементы VIIIА-группы (благородные газы) и VIIА-группы (галогены), элементы VIА-группы (кроме полония), элементы азот, фосфор, мышьяк (VА-группа); углерод, кремний (IVА-группа); бор (IIIА-группа), а также водород. Остальные элементы относят к металлам.

При составлении названий веществ обычно применяют русские наименования элементов, например, дикислород, дифторид ксенона, селенат калия. По традиции для некоторых элементов в производные термины вводят корни их латинских наименований:

Например : карбонат, манганат, оксид, сульфид, силикат.

Названия простых веществ состоят из одного слова - наименования химического элемента с числовой приставкой, например:

Используются следующие числовые приставки :

Неопределенное число указывается числовой приставкой n - поли.

Для некоторых простых веществ используют также специальные названия, такие, как О 3 - озон, Р 4 - белый фосфор.

Химические формулы сложных веществ составляют из обозначения электроположительной (условных и реальных катионов) и электроотрицательной (условных и реальных анионов) составляющих, например, CuSO 4 (здесь Cu 2+ - реальный катион, SO 4 2 - - реальный анион) и PCl 3 (здесь P +III - условный катион, Cl -I - условный анион).

Названия сложных веществ составляют по химическим формулам справа налево. Они складываются из двух слов - названий электроотрицательных составляющих (в именительном падеже) и электроположительных составляющих (в родительном падеже), например:

CuSO 4 - сульфат меди(II)
PCl 3 - трихлорид фосфора
LaCl 3 - хлорид лантана(III)
СО - монооксид углерода

Число электроположительных и электроотрицательных составляющих в названиях указывают числовыми приставками, приведенными выше (универсальный способ), либо степенями окисления (если они могут быть определены по формуле) с помощью римских цифр в круглых скобках (знак плюс опускается). В ряде случаев приводят заряд ионов (для сложных по составу катионов и анионов), используя арабские цифры с соответствующим знаком.

Для распространенных многоэлементных катионов и анионов применяют следующие специальные названия:

H 2 F + - фтороний

C 2 2 - - ацетиленид

H 3 O + - оксоний

CN - - цианид

H 3 S + - сульфоний

CNO - - фульминат

NH 4 + - аммоний

HF 2 - - гидродифторид

N 2 H 5 + - гидразиний(1+)

HO 2 - - гидропероксид

N 2 H 6 + - гидразиний(2+)

HS - - гидросульфид

NH 3 OH + - гидроксиламиний

N 3 - - азид

NO + - нитрозил

NCS - - тиоционат

NO 2 + - нитроил

O 2 2 - - пероксид

O 2 + - диоксигенил

O 2 - - надпероксид

PH 4 + - фосфоний

O 3 - - озонид

VO 2 + - ванадил

OCN - - цианат

UO 2 + - уранил

OH - - гидроксид

Для небольшого числа хорошо известных веществ также используют специальные названия:

1. Кислотные и основные гидроксиды. Соли

Гидроксиды - тип сложных веществ, в состав которых входят атомы некоторого элемента Е (кроме фтора и кислорода) и гидроксогруппы ОН; общая формула гидроксидов Е(ОН) n , где n = 1÷6. Форма гидроксидов Е(ОН) n называется орто -формой; при n > 2 гидроксид может находиться также в мета -форме, включающей кроме атомов Е и групп ОН еще атомы кислорода О, например Е(ОН) 3 и ЕО(ОН), Е(ОН) 4 и Е(ОН) 6 и ЕО 2 (ОН) 2 .

Гидроксиды делят на две противоположные по химическим свойствам группы: кислотные и основные гидроксиды.

Кислотные гидроксиды содержат атомы водорода, которые могут замещаться на атомы металла при соблюдении правила стехиометрической валентности. Большинство кислотных гидроксидов находится в мета -форме, причем атомы водорода в формулах кислотных гидроксидов ставят на первое место, например H 2 SO 4 , HNO 3 и H 2 CO 3 , а не SO 2 (OH) 2 , NO 2 (OH) и CO(OH) 2 . Общая формула кислотных гидроксидов - Н х ЕО у , где электроотрицательную составляющую ЕО у х - называют кислотным остатком. Если не все атомы водорода замещены на металл, то они остаются в составе кислотного остатка.

Названия распространенных кислотных гидроксидов состоят из двух слов: собственного названия с окончанием "ая" и группового слова "кислота". Приведем формулы и собственные названия распространенных кислотных гидроксидов и их кислотных остатков (прочерк означает, что гидроксид не известен в свободном виде или в кислом водном растворе):

кислотный гидроксид

кислотный остаток

HAsO 2 - метамышьяковистая

AsO 2 - - метаарсенит

H 3 AsO 3 - ортомышьяковистая

AsO 3 3 - - ортоарсенит

H 3 AsO 4 - мышьяковая

AsO 4 3 - - арсенат

В 4 О 7 2 - - тетраборат

ВiО 3 - - висмутат

HBrO - бромноватистая

BrO - - гипобромит

HBrO 3 - бромноватая

BrO 3 - - бромат

H 2 CO 3 - угольная

CO 3 2 - - карбонат

HClO - хлорноватистая

ClO - - гипохлорит

HClO 2 - хлористая

ClO 2 - - хлорит

HClO 3 - хлорноватая

ClO 3 - - хлорат

HClO 4 - хлорная

ClO 4 - - перхлорат

H 2 CrO 4 - хромовая

CrO 4 2 - - хромат

НCrO 4 - - гидрохромат

H 2 Cr 2 О 7 - дихромовая

Cr 2 O 7 2 - - дихромат

FeO 4 2 - - феррат

HIO 3 - иодноватая

IO 3 - - иодат

HIO 4 - метаиодная

IO 4 - - метапериодат

H 5 IO 6 - ортоиодная

IO 6 5 - - ортопериодат

HMnO 4 - марганцовая

MnO 4 - - перманганат

MnO 4 2 - - манганат

MоO 4 2 - - молибдат

HNO 2 - азотистая

NO 2 - - нитрит

HNO 3 - азотная

NO 3 - - нитрат

HPO 3 - метафосфорная

PO 3 - - метафосфат

H 3 PO 4 - ортофосфорная

PO 4 3 - - ортофосфат

НPO 4 2 - - гидроортофосфат

Н 2 PO 4 - - дигидроотофосфат

H 4 P 2 O 7 - дифосфорная

P 2 O 7 4 - - дифосфат

ReO 4 - - перренат

SO 3 2 - - сульфит

HSO 3 - - гидросульфит

H 2 SO 4 - серная

SO 4 2 - - сульфат

НSO 4 - - гидросульфат

H 2 S 2 O 7 - дисерная

S 2 O 7 2 - - дисульфат

H 2 S 2 O 6 (O 2) - пероксодисерная

S 2 O 6 (O 2) 2 - - пероксодисульфат

H 2 SO 3 S - тиосерная

SO 3 S 2 - - тиосульфат

H 2 SeO 3 - селенистая

SeO 3 2 - - селенит

H 2 SeO 4 - селеновая

SeO 4 2 - - селенат

H 2 SiO 3 - метакремниевая

SiO 3 2 - - метасиликат

H 4 SiO 4 - ортокремниевая

SiO 4 4 - - ортосиликат

H 2 TeO 3 - теллуристая

TeO 3 2 - - теллурит

H 2 TeO 4 - метателлуровая

TeO 4 2 - - метателлурат

H 6 TeO 6 - ортотеллуровая

TeO 6 6 - - ортотеллурат

VO 3 - - метаванадат

VO 4 3 - - ортованадат

WO 4 3 - - вольфрамат

Менее распространенные кислотные гидроксиды называют по номенклатурным правилам для комплексных соединений, например:

Названия кислотных остатков используют при построении названий солей.

Основные гидроксиды содержат гидроксид-ионы, которые могут замещаться на кислотные остатки при соблюдении правила стехиометрической валентности. Все основные гидроксиды находятся в орто -форме; их общая формула М(ОН) n , где n = 1,2 (реже 3,4) и М n + - катион металла. Примеры формул и названий основных гидроксидов:

Важнейшим химическим свойством основных и кислотных гидроксидов является их взаимодействие их между собой с образованием солей (реакция солеобразования ), например:

Ca(OH) 2 + H 2 SO 4 = CaSO 4 + 2H 2 O

Ca(OH) 2 + 2H 2 SO 4 = Ca(HSO 4) 2 + 2H 2 O

2Ca(OH) 2 + H 2 SO 4 = Ca 2 SO 4 (OH) 2 + 2H 2 O

Соли - тип сложных веществ, в состав которых входят катионы М n + и кислотные остатки*.

Соли с общей формулой М х (ЕО у ) n называют средними солями, а соли с незамещенными атомами водорода, - кислыми солями. Иногда соли содержат в своем составе также гидроксид - или(и) оксид - ионы; такие соли называют основными солями. Приведем примеры и названия солей:

Ортофосфат кальция

Дигидроортофосфат кальция

Гидроортофосфат кальция

Карбонат меди(II)

Cu 2 CO 3 (OH) 2

Дигидроксид-карбонат димеди

Нитрат лантана(III)

Оксид-динитрат титана

Кислые и основные соли могут быть превращены в средние соли взаимодействием с соответствующим основным и кислотным гидроксидом, например:

Ca(HSO 4) 2 + Ca(OH) = CaSO 4 + 2H 2 O

Ca 2 SO 4 (OH) 2 + H 2 SO 4 = Ca 2 SO 4 + 2H 2 O

Встречаются также соли, содерхащие два разных катиона: их часто называют двойными солями , например:

2. Кислотные и оснόвные оксиды

Оксиды Е х О у - продукты полной дегидратации гидроксидов:

Кислотным гидроксидам (H 2 SO 4 , H 2 CO 3) отвечают кислотные оксиды (SO 3 , CO 2), а основным гидроксидам (NaOH, Ca(OH) 2) - основные оксиды (Na 2 O, CaO), причем степень окисления элемента Е не изменяется при переходе от гидроксида к оксиду. Пример формул и названий оксидов:

Кислотные и основные оксиды сохраняют солеобразующие свойства соответствующих гидроксидов при взаимодействии с противоположными по свойствам гидроксидами или между собой:

N 2 O 5 + 2NaOH = 2NaNO 3 + H 2 O

3CaO + 2H 3 PO 4 = Ca 3 (PO 4) 2 + 3H 2 O

La 2 O 3 + 3SO 3 = La 2 (SO 4) 3

3. Амфотерные оксиды и гидроксиды

Амфотерность гидроксидов и оксидов - химическое свойство, заключающееся в образовании ими двух рядов солей, например, для гидроксида и оксида алюминия:

(а) 2Al(OH) 3 + 3SO 3 = Al 2 (SO 4) 3 + 3H 2 O

Al 2 O 3 + 3H 2 SO 4 = Al 2 (SO 4) 3 + 3H 2 O

(б) 2Al(OH) 3 + Na 2 O = 2NaAlO 2 + 3H 2 O

Al 2 O 3 + 2NaOH = 2NaAlO 2 + H 2 O

Так, гидроксид и оксид алюминия в реакциях (а) проявляют свойства основных гидроксидов и оксидов, т.е. реагируют с кислотными гидроксидам и оксидом, образуя соответствующую соль - сульфат алюминия Al 2 (SO 4) 3 , тогда как в реакциях (б) они же проявляют свойства кислотных гидроксидов и оксидов, т.е. реагируют с основными гидроксидом и оксидом, образуя соль - диоксоалюминат (III) натрия NaAlO 2 . В первом случае элемент алюминий проявляет свойство металла и входит в состав электроположительной составляющей (Al 3+), во втором - свойство неметалла и входит в состав электроотрицательной составляющей формулы соли (AlO 2 -).

Если указанные реакции протекают в водном растворе, то состав образующихся солей меняется, но присутствие алюминия в катионе и анионе остаётся:

2Al(OH) 3 + 3H 2 SO 4 = 2 (SO 4) 3

Al(OH) 3 + NaOH = Na

Здесь квадратными скобками выделены комплексные ионы 3+ - катион гексаакваалюминия(III), - - тетрагидроксоалюминат(III)-ион.

Элементы, проявляющие в соединениях металлические и неметаллические свойства, называют амфотерными, к ним относятся элементы А-групп Периодической системы - Be, Al, Ga, Ge, Sn, Pb, Sb, Bi, Po и др., а также большинство элементов Б-групп - Cr, Mn, Fe, Zn, Cd, Au и др. Амфотерные оксиды называют так же, как и основные, например:

Амфотерные гидроксиды (если степень окисления элемента превышает + II) могут находиться в орто - или (и) мета - форме. Приведем примеры амфотерных гидроксидов:

Амфотерным оксидам не всегда соответствуют амфотерные гидроксиды, поскольку при попытке получения последних образуются гидратированные оксиды, например:

Если амфотерному элементу в соединениях отвечает несколько степеней окисления, то амфотерность соответствующих оксидов и гидроксидов (а следовательно, и амфотерность самого элемента) будет выражена по-разному. Для низких степеней окисления у гидроксидов и оксидов наблюдается преобладание основных свойств, а у самого элемента - металлических свойств, поэтому он почти всегда входит в состав катионов. Для высоких степеней окисления, напротив, у гидроксидов и оксидов наблюдается преобладание кислотных свойств, а у самого элемента - неметаллических свойств, поэтому он почти всегда входит в состав анионов. Так, у оксида и гидроксида марганца(II) доминируют основные свойства, а сам марганец входит в состав катионов типа 2+ , тогда как у оксида и гидроксида марганца(VII) доминируют кислотные свойства, а сам марганец входит в состав аниона типа MnO 4 - . Амфотерным гидроксидам с большим преобладанием кислотных свойств приписывают формулы и названия по образцу кислотных гидроксидов, например НMn VII O 4 - марганцовая кислота.

Таким образом, деление элементов на металлы и неметаллы - условное; между элементами (Na, K, Ca, Ba и др.) с чисто металлическими и элементами (F, O, N, Cl, S, C и др.) с чисто неметаллическими свойствами существует большая группа элементов с амфотерными свойствами.

4. Бинарные соединения

Обширный тип неорганических сложных веществ - бинарные соединения. К ним относятся, в первую очередь все двухэлементные соединения (кроме основных, кислотных и амфотерных оксидов), например H 2 O, KBr, H 2 S, Cs 2 (S 2), N 2 O, NH 3 , HN 3 , CaC 2 , SiH 4 . Электроположительная и электроотрицательная составляющие формул этих соединений включают отдельные атомы или связанные группы атомов одного элемента.

Многоэлементные вещества, в формулах которых одна из составляющих содержит не связанные между собой атомы нескольких элементов, а также одноэлементные или многоэлементные группы атомов (кроме гидроксидов и солей), рассматривают как бинарные соединения, например CSO, IO 2 F 3 , SBrO 2 F, CrO(O 2) 2 , PSI 3 , (CaTi)O 3 , (FeCu)S 2 , Hg(CN) 2 , (PF 3) 2 O, VCl 2 (NH 2). Так, CSO можно представить как соединение CS 2 , в котором один атом серы заменен на атом кислорода.

Названия бинарных соединений строятся по обычным номенклатурным правилам, например:

OF 2 - дифторид кислорода

K 2 O 2 - пероксид калия

HgCl 2 - хлорид ртути(II)

Na 2 S - сульфид натрия

Hg 2 Cl 2 - дихлорид диртути

Mg 3 N 2 - нитрид магния

SBr 2 O - оксид-дибромид серы

NH 4 Br - бромид аммония

N 2 O - оксид диазота

Pb(N 3) 2 - азид свинца(II)

NO 2 - диоксид азота

CaC 2 - ацетиленид кальция

Для некоторых бинарных соединений используют специальные названия, список которых был приведен ранее.

Химические свойства бинарных соединений довольно разнообразны, поэтому их часто разделяют на группы по названию анионов, т.е. отдельно рассматривают галогениды, халькогениды, нитриды, карбиды, гидриды и т. д. Среди бинарных соединений встречаются и такие, которые имеют некоторые признаки других типов неорганических веществ. Так, соединения CO, NO, NO 2 , и (Fe II Fe 2 III)O 4 , названия которых строятся с применением слова оксид, к типу оксидов (кислотных, основных, амфотерных) отнесены быть не могут. Монооксид углерода СО, монооксид азота NO и диоксид азота NO 2 не имеют соответствующих кислотных гидроксидов (хотя эти оксиды образованы неметаллами С и N), не образуют они и солей, в состав анионов которых входили бы атомы С II , N II и N IV . Двойной оксид (Fe II Fe 2 III)O 4 - оксид дижелеза(III)-железа(II) хотя и содержит в составе электроположительной составляющей атомы амфотерного элемента - железа, но в двух разных степенях окисления, вследствие чего при взаимодействии с кислотными гидроксидами образует не одну, а две разные соли.

Такие бинарные соединения, как AgF, KBr, Na 2 S, Ba(HS) 2 , NaCN, NH 4 Cl, и Pb(N 3) 2 , построены, подобно солям, из реальных катионов и анионов, поэтому их называют солеобразными бинарными соединениями (или просто солями). Их можно рассматривать как продукты замещения атомов водорода в соединениях НF, НCl, НBr, Н 2 S, НCN и НN 3 . Последние в водном растворе обладают кислотной функцией, и поэтому их растворы называют кислотами, например НF(aqua) - фтороводородная кислота, Н 2 S(aqua) - сероводородная кислота. Однако они не принадлежат к типу кислотных гидроксидов, а их производные - к солям в рамках классификации неорганических веществ.

Несколько десятков тысяч важнейших химических веществ плотно вошли в нашу жизнь, одевая и обувая, снабжая наш организм полезными элементами, обеспечивая нам оптимальные условия для жизнедеятельности. Масла, щелочи, кислоты, газы, минеральные удобрения, краски, пластмассы - лишь малая часть продукции, созданной на основе химических элементов.

Не знали?

Просыпаясь утром, мы умываемся и чистим зубы. Мыло, зубная паста, шампунь, лосьоны, кремы - средства, созданные на основе химии. Завариваем чай, опускаем в стакан кусочек лимона - и наблюдаем, как жидкость становится светлее. На наших глазах происходит химическая реакция - кислотно-основное взаимодействие нескольких продуктов. Ванная и кухня - каждая, в своем роде, мини-лаборатория дома или квартиры, где в емкости или пузырьке что-то хранится. Какое вещество, название их узнаем с этикетки: соль, сода, белизна и т. д.

Особенно много химических процессов происходит на кухне в период приготовления пищи. Сковородки и кастрюли успешно заменяют здесь колбы и реторты, а каждый новый отправленный в них продукт осуществляет свою отдельную химическую реакцию, взаимодействуя с находящимся там составом. Далее человек, употребляя приготовленные им блюда, запускает механизм переваривания еды. Это тоже И так во всем. Вся наша жизнь предопределена элементами из периодической таблицы Менделеева.

Открытая таблица

Изначально таблица, созданная Дмитрием Ивановичем, состояла из 63 элементов. Именно столько их к тому времени было открыто. Ученый понимал, что он классифицировал далеко не полный список существующих и открытых в разные годы его предшественниками в природе элементов. И оказался прав. Более чем через сто лет его таблица состояла уже из 103 наименований, к началу нулевых - из 109, и открытия продолжаются. Ученые всего мира бьются над вычислением новых элементов, опираясь на основу - таблицу, созданную русским ученым.

Периодический закон Менделеева - основа химии. Взаимодействия между собой атомов тех или иных элементов породили в природе основные вещества. Те, в свою очередь, - ранее неизвестные и более сложные их производные. Все существующие на сегодня названия веществ происходят от элементов, вступивших во взаимосвязь между собой в процессе химических реакций. Молекулы веществ отражают состав этих элементов в них, а также количество атомов.

Каждому элементу - свой буквенный символ

В периодической таблице название элементов дается как в буквенном, так и в символическом выражении. Одни мы произносим, другие используем при написании формул. Выпишите отдельно названия веществ и посмотрите на ряд их символов. Он показывает, из каких элементов состоит продукт, сколько атомов того или иного составляющего смогло синтезировать в процессе химической реакции каждое конкретное вещество. Все довольно просто и наглядно, благодаря наличию символов.

Основой символического выражения элементов стала начальная, а, в большинстве случаях, и одна из последующих букв из латинского названия элемента. Система была предложена в начале 19 века Берцелиусом - химиком из Швеции. Одной буквой на сегодня выражены названия двух десятков элементов. Остальные - двухбуквенные. Примеры таких названий: медь - Cu (cuprum), железо - Fe (ferrum), магний - Mg (magnium) и так далее. В названии веществ даны продукты реакции тех или иных элементов, а в формулы - их символический ряд.

Продукт безопасный и не очень

Химии вокруг нас гораздо больше, чем может предположить среднестатистический индивид. Не занимаясь наукой профессионально, нам все равно приходится с нею сталкиваться в своей повседневной жизни. Все, что стоит на нашем столе, - состоит из химических элементов. Даже человеческий организм соткан из десятков химических веществ.

Названия химических веществ, существующих в природе, можно разделить на две группы: используемых в повседневности или нет. Сложные и опасные соли, кислоты, эфирные соединения являются узко специфическими и применяемыми исключительно в профессиональной деятельности. Они требуют осторожности и точности в их использовании, а в отдельных случаях и специального разрешения. Вещества, незаменимые в быту, менее безобидные, но их неправильное применение может привести к тяжелым последствиям. Отсюда можно сделать вывод, что безобидной химии не бывает. Разберем основные вещества, с которыми связана жизнедеятельность человека.

Биополимер как строительный материал организма

Основным фундаментальным компонентом организма является белок - состоящий из аминокислот и воды полимер. Он отвечает за формирование клеток, гормональной и иммунной систем, мышечной массы, костей, связок, внутренних органов. Тело человека состоит из более одного миллиарда клеток, и для каждой нужен белок или, как его еще называют - протеин. На основании вышеизложенного приведите названия веществ, более незаменимых для живого организма. Основа тела - клетка, основа клетки - белок. Другого не дано. Недостаток протеина, как и его переизбыток, приводит к нарушению всех жизненно важных функций организма.

В построении белков участвуют порядка создающих макромолекулы пептидными связями. Те, в свою очередь, возникают в результате взаимодействия веществ СООН - карбоксильных и NH 2 - аминогрупп. Самый известный из белков - коллаген. Он относится к классу фибриллярных белков. Самый первый, строение которого удалось установить, - инсулин. Даже для далекого от химии человека эти названия говорят о многом. Но не все знают, что эти вещества - белки.

Незаменимые аминокислоты

Клетка белка состоит из аминокислот - название веществ, имеющих боковую цепь в строении молекул. Их образуют: C - углерод, N - азот, O - кислород и H - водород. Из двадцати стандартных аминокислот девять попадают в клетки исключительно с пищей. Остальные синтезируются организмом в процессе взаимодействия различных соединений. С возрастом или при наличии заболеваний список из девяти незаменимых аминокислот значительно расширяется и пополняется условно незаменимыми.

Всего известно более пятисот различных аминокислот. Их классифицируют многими способами, один из которых разделяет их на две группы: протеиногенные и непротеиногенные. Некоторые из них играют незаменимую роль в процессе функционирования организма, не связанную с формированием белка. Названия органических веществ в этих группах, являющихся ключевыми: глутамат, глицин, карнитин. Последний служит транспортером по организму липидов.

Жиры: и просто, и сложно

Все жироподобные вещества в организме мы привыкли называть липидами или жирами. Их основное физическое свойство - нерастворимость в воде. Однако во взаимодействии с другими веществами, такими как бензол, спирт, хлороформ и другие, эти органические соединения расщепляются довольно легко. Основное химическое отличие жиров - похожие свойства, но различные строения. В жизнедеятельности живого организма эти вещества отвечают за его энергию. Так, один грамм липидов способен выделить около сорока кДж.

Большое количество входящих в молекулы жиров веществ не позволяют произвести их удобную и доступную классификацию. Основное, что их объединяет, - отношение к процессу гидролиза. В этом отношении жиры бывают омыляемые и неомыляемые. Названия веществ, создающих первую группу, подразделяют на простые и сложные липиды. К простым относятся некоторые виды воска, хорестерольные эфиры. Ко вторым - сфинголипиды, фосфолипиды и ряд других веществ.

Углеводы как третий тип питательных веществ

Третий тип основных питательных веществ живой клетки наравне с белками и жирами - углеводы. Это состоящие из H (водорода), O (кислорода) и C (углерода) органические соединения. и их функции схожи со свойствами жиров. Они также являются источниками энергии организма, но в отличие от липидов, в основном, попадают туда с пищей растительного происхождения. Исключение составляет молоко.

Углеводы подразделяются на полисахариды, моносахариды и олигосахариды. Одни не растворяются в воде, другие - наоборот. Далее даны названия веществ нерастворимых. К ним относятся такие сложные углеводы из группы полисахаридов, как крахмал и целлюлоза. Их расщепление на более простые вещества происходит под воздействием соков, выделяемых системой пищеварения.

Полезные вещества двух других групп содержатся в ягодах и фруктах в виде растворимых в воде сахаров, отлично усваиваемых организмом. Олигосахариды - лактоза и сахароза, моносахариды - фруктоза и глюкоза.

Глюкоза и клетчатка

Такие названия веществ, как глюкоза и клетчатка в повседневной жизни человека встречается часто. Оба - углеводы. Один - из моносахаридов, содержащийся в крови любого живого организма и соке растений. Второй - из полисахаридов, отвечающий за процесс пищеварения, в остальных функциях клетчатка используется редко, но также является незаменимым веществом. Их строение и синтез довольно сложные. Но человеку достаточно знать основные функции, принимаемые в жизнедеятельности организма, чтобы не пренебрегать их употреблением.

Глюкоза обеспечивает клетки таким веществом, как виноградный сахар, дающий энергию для их ритмичного бесперебойного функционирования. Около 70 процентов глюкозы попадает в клетки с питанием, остальные тридцать - организм вырабатывает самостоятельно. В глюкозе пищевого происхождения крайне нуждается головной мозг человека, так как этот орган не способен самостоятельно синтезировать глюкозу. В меде она содержится в наибольшем количестве.

Не так проста аскорбинка

Знакомый каждому с детства источник витамина C - сложное химическое вещество, состоящее из атомов водорода и кислорода. Их взаимодействие с другими элементами может привести даже к созданию солей - достаточно в соединении поменять всего лишь один атом. В этом случае название и класс вещества изменятся. Опыты, проведенные с аскорбиновой кислотой, открыли ее незаменимые свойства в функции восстановления кожи человека.

Кроме того, она укрепляет иммунную систему кожного покрова, помогает противостоять негативным воздействиям атмосферы. Обладает омолаживающим, отбеливающим свойством, предупреждает старение, нейтрализует свободные радикалы. Содержится в цитрусах, болгарском перце, целебных травах, клубнике. Около ста миллиграмм аскорбинки - оптимальную суточную дозу - можно получить с шиповником, облепихой, а также киви.

Вещества вокруг нас

Мы убедились, что вся наша жизнь - химия, так как человека сам целиком состоит из ее элементов. Пища, обувь и одежда, средства гигиены - лишь малая толика того, где мы встречаем плоды науки в быту. Предназначение многих элементов мы знаем и используем для собственного блага. В редком доме не встретишь борную кислоту, или гашеную известь, как мы ее называем, или гидроксид кальция, как она известна науке. Широко используется человеком медный купорос - сульфат меди. Название вещества произошло от названия ее главного компонента.

Гидрокарбонат натрия - привычная в быту сода. Эта новая кислота - уксусная кислота. И так с любым или животного происхождения. Все они состоят из соединений химических элементов. Их молекулярное строение может объяснить далеко не каждый, достаточно знать название, предназначение вещества и правильно его использовать.

В таблице Менделеева, принятой у нас, приводятся русские названия элементов. У подавляющего числа элементов они фонетически близки к латинским: аргон - argon, барий - barium, кадмий - cadmium и т.д. Аналогично называются эти элементы и в большинстве западноевропейских языков. У некоторых же химических элементов названия в разных языках совершенно различны.

Всё это не случайно. Наибольшие отличия в названиях тех элементов (либо их самых распространённых соединений), с которыми человек познакомился в древности или в начале средних веков. Это семь металлов древних (золото, серебро, медь, свинец, олово, железо, ртуть, которые сопоставлялись с известными тогда планетами, а также сера и углерод). Они встречаются в природе в свободном состоянии, и многие получили названия, соответствующие их физическим свойствам.

Вот наиболее вероятное происхождение этих названий:

Золото

С древнейших времен блеск золота сопоставлялся с блеском солнца (sol). Отсюда - русское «золото». Слово gold в европейских языках связано с греческим богом Солнца Гелиосом. Латинское aurum означает «жёлтое» и родственно с «Авророй» (Aurora) - утренней зарёй.

Серебро

По-гречески серебро - «аргирос», от «аргос» - белый, блистающий, сверкающий (индоевропейский корень «арг» - пылать, быть светлым). Отсюда - argentum. Интересно, что единственная страна, названная по химическому элементу (а не наоборот), - это Аргентина. Слова silver, Silber, a также серебро восходят к древнегерманскому silubr, происхождение которого неясно (возможно, слово пришло из Малой Азии, от ассирийского sarrupum - белый металл, серебро).

Железо

Происхождение этого слова доподлинно неизвестно; по одной из версий, оно родственно слову «лезвие». Европейские iron, Eisen происходят от санскритского «исира» - крепкий, сильный. Латинское ferrum происходит от fars - быть твёрдым. Название природного карбоната железа (сидерита) происходит от лат. sidereus - звёздный; действительно, первое железо, попавшее в руки людям, было метеоритного происхождения. Возможно, это совпадение не случайно.

Сера

Происхождение латинского sulfur неизвестно. Русское название элемента обычно производят от санскритского «сира» - светло-желтый. Интересно было бы проследить, нет ли родства у серы с древнееврейским серафим - множительным числом от сераф; буквально «сераф» означает «сгорающий», а сера хорошо горит. В древнерусском и старославянском сера - вообще горючее вещество, в том числе и жир.

Свинец

Происхождение слова неясно; во всяком случае, ничего общего со свиньей. Самое удивительное здесь то, что на большинстве славянских языков (болгарском, сербско-хорватском, чешском, польском) свинец называется оловом! Наш «свинец» встречается только в языках балтийской группы: svinas (литовский), svin (латышский).

Английское название свинца lead и голландское lood, возможно, связаны с нашим «лудить», хотя лудят опять же не ядовитым свинцом, а оловом. Латинское же plumbum (тоже неясного происхождения) дало английское слово plumber - водопроводчик (когда-то трубы зачеканивали мягким свинцом), и название венецианской тюрьмы со свинцовой крышей - Пьомбе. Из этой тюрьмы по некоторым данным ухитрился бежать Казанова. А вот мороженое здесь ни при чём: пломбир произошёл от названия французского курортного городка Пломбьер.

Олово

В Древнем Риме олово называли «белым свинцом» (plumbum album), в отличие от plumbum nigrum - чёрного, или обыкновенного, свинца. По-гречески белый - алофос. По-видимому, от этого слова и произошло «олово», что указывало на цвет металла. В русский язык оно попало в XI веке и означало как олово, так и свинец (в древности эти металлы плохо различали). Латинское stannum связано с санскритским словом, означающим стойкий, прочный. Происхождение английского (а также голландского и датского) tin неизвестно.

Ртуть

Латинское hydrargirum произошло от греческих слов «хюдор» - вода и «аргирос» - серебро. «Жидким» (или «живым», «быстрым») серебром ртуть называется также в немецком (Quecksilber) и в староанглийском (quicksilver) языках, а по-болгарски ртуть - живак: действительно, шарики ртути блестят, как серебро, и очень быстро «бегают» - как живые. Современное английское (mercury) и французское (mercure) названия ртути произошли от имени латинского бога торговли Меркурия. Меркурий был также вестником богов, и его обычно изображали с крылышками на сандалиях или на шлеме. Так что бог Меркурий бегал так же быстро, как переливается ртуть. Ртути соответствовала планета Меркурий, которая быстрее других передвигается по небосводу.

Русское название ртути, по одной из версий, - это заимствование из арабского (через тюркские языки); по другой версии, «ртуть» связана с литовским ritu - качу, катаю, происшедшим от индоевропейского рет(х) - бежать, катиться. Литва и Русь были тесно связаны, а во 2-й половине XIV века русский язык был языком делопроизводства великого княжества Литовского, а также языком первых письменных памятников Литвы.

Углерод

Международное название происходит от латинского carbo - уголь, связанного с древним корнем kar - огонь. Этот же корень в латинском cremare - гореть, а возможно, и в русском «гарь», «жар», «угореть» (в древнерусском «угорати» - обжигать, опалять). Отсюда - и «уголь». Вспомним здесь также игру горелки и украинскую горшку.

Медь

Слово того же происхождения, что и польское miedz, чешское med. У этих слов два источника - древненемецкое smida - металл (отсюда немецкие, английские, голландские, шведские и датские кузнецы - Schmied, smith, smid, smed) и греческое «металлон» - рудник, копь. Так что медь и металл - родственники сразу по двум линиям. Латинское cuprum (от него произошли и другие европейские названия) связано с островом Кипр, где уже в III веке до н.э. существовали медные рудники и производилась выплавка меди. Римляне называли медь cyprium aes - металл из Кипра. В позднелатинском cyprium перешло в cuprum. С местом добычи или с минералом связаны названия многих элементов.

Кадмий

Открыт в 1818 году немецким химиком и фармацевтом Фридрихом Штромейером в карбонате цинка, из которого на фармацевтической фабрике получали медицинские препараты. Греческим словом «кадмейа» с древних времён называли карбонатные цинковые руды. Название восходит к мифическому Кадму (Кадмосу) - герою греческой мифологии, брату Европы, царю Кадмейской земли, основателю Фив, победителю дракона, из зубов которого выросли воины. Кадм будто бы первым нашёл цинковый минерал и открыл людям его способность изменять цвет меди при совместной выплавке их руд (сплав меди с цинком - латунь). Имя Кадма восходит к семитскому «Ка-дем» - Восток.

Кобальт

В XV веке в Саксонии среди богатых серебряных руд обнаруживали блестящие, как сталь, белые или серые кристаллы, из которых не удавалось выплавить металл; их примесь к серебряной или медной руде мешала выплавке этих металлов. «Нехорошая» руда получила у горняков имя горного духа Коболда. По всей видимости, это были содержащие мышьяк кобальтовые минералы - кобальтин CoAsS, или сульфиды кобальта скуттерудит, сафлорит или смальтин. При их обжиге выделяется летучий ядовитый оксид мышьяка. Вероятно, имя злого духа восходит к греческому «кобалос» - дым; он образуется при обжиге руд, содержащих сульфиды мышьяка. Этим же словом греки называли лживых людей. В 1735 году шведский минералог Георг Бранд сумел выделить из этого минерала не известный ранее металл, который и назвал кобальт. Он выяснил также, что соединения именно этого элемента окрашивают стекло в синий цвет - этим свойством пользовались ещё в древних Ассирии и Вавилоне.

Никель

Происхождение названия сходно с кобальтом. Средневековые горняки называли Никелем злого горного духа, а «купферникелем» (Kupfernickel, медный чёрт) - фальшивую медь. Эта руда внешне походила на медную и применялась в стекловарении для окрашивания стекол в зелёный цвет. А вот медь из неё никому получить не удавалось - её там не было. Эту руду - медно-красные кристаллы никелина (красного никелевого колчедана NiAs) в 1751 году исследовал шведский минералог Аксель Кронштедт и выделил из неё новый металл, назвав его никелем.

Ниобий и тантал

В 1801 году английский химик Чарлз Хатчет проанализировал чёрный минерал, хранившийся в Британском музее и найденный ещё в 1635 году на территории современного штата Массачусетс в США. Хатчет обнаружил в минерале оксид неизвестного элемента, который получил название Колумбии - в честь страны, где он был найден (в то время США ещё не имели устоявшегося названия, и многие называли их Колумбией по имени первооткрывателя континента). Минерал же назвали колумбитом. В 1802 году шведский химик Андерс Экеберг выделил из колумбита ещё один оксид, который упорно не хотел растворяться (как тогда говорили - насыщаться) ни в одной кислоте. «Законодатель» в химии тех времён шведский химик Йене Якоб Берцелиус предложил назвать содержащийся в этом оксиде металл танталом. Тантал - герой древнегреческих мифов; в наказание за свои противоправные действия он стоял по горло в воде, к которой склонялись ветви с плодами, но не мог ни напиться, ни насытиться. Аналогично и тантал не мог «насытиться» кислотой - она отступала от него, как вода от Тантала. По свойствам этот элемент настолько был похож на колумбий, что в течение длительного времени шли споры о том, являются ли Колумбий и тантал одним и тем же или всё же разными элементами. Только в 1845 году немецкий химик Генрих Розе разрешил спор, проанализировав несколько минералов, в том числе и колумбит из Баварии. Он установил, что на самом деле существуют два близких по свойствам элемента. Колумбий Хатчета оказался их смесью, а формула колумбита (точнее, манганоколумбита) - (Fe,Mn)(Nb,Ta)2O6. Второй элемент Розе назвал ниобием, по имени дочери Тантала Ниобы. Однако символ Cb до середины XX века оставался в американских таблицах химических элементов: там он стоял на месте ниобия. А имя Хатчета увековечено в названии минерала хатчита.

Прометий

Его много раз «открывали» в различных минералах при поисках недостающего редкоземельного элемента, который должен был занимать место между неодимом и самарием. Но все эти открытия оказались ложными. Впервые недостающее звено в цепи лантанидов обнаружили в 1947 году американские исследователи Дж. Маринский, Л. Гленденин и Ч. Кориэлл, разделив хроматографически продукты деления урана в ядерном реакторе. Жена Кориэлла предложила назвать открытый элемент прометием, по имени Прометея, похитившего у богов огонь и передавшего его людям. Этим подчеркивалась грозная сила, заключенная в ядерном «огне». Жена исследователя оказалась права.

Торий

В 1828 году Й.Я. Берцелиус обнаружил в редком минерале, присланном ему из Норвегии, соединение нового элемента, который он назвал торием - в честь древнескандинавского бога Тора. Правда, название это Берцелиус придумал ещё в 1815 году, когда ошибочно «открыл» торий в другом минерале из Швеции. Это был тот редкий случай, когда сам исследователь «закрыл» якобы обнаруженный им элемент (в 1825 году, когда оказалось, что ранее у Берцелиуса был фосфат иттрия). Новый же минерал назвали торитом, это был силикат тория ThSiO4. Торий радиоактивен; период его полураспада 14 млрд. лет, конечный продукт распада - свинец. По количеству свинца в ториевом минерале можно определить его возраст. Так, возраст одного из минералов, найденного в штате Вирджиния, оказался равным 1,08 млрд. лет.

Титан

Считается, что этот элемент открыл немецкий химик Мартин Клапрот. В 1795 году он обнаружил в минерале рутиле оксид неизвестного металла, который назвал титаном. Титаны - в древнегреческой мифологии гиганты, с которыми боролись боги-олимпийцы. Через два года выяснилось, что элемент «менакин», который обнаружил в 1791 году английский химик Уильям Грегор в минерале ильмените (FeTiO3), тождествен титану Клапрота.

Ванадий

Открыт в 1830 году шведским химиком Нильсом Сефстремом в шлаке доменных печей. Назван в честь древнескандинавской богини красоты Ванадис, или Вана-Дис. В этом случае тоже выяснилось, что ванадий открывали и раньше, и даже не один раз - мексиканский минералог Андрее Мануэль дель Рио в 1801 году и немецкий химик Фридрих Вёлер незадолго до открытия Сефстрема. Но дель Рио сам отказался от своего открытия, решив, что имеет дело с хромом, а Вёлеру завершить работу помешала болезнь.

Уран, нептуний, плутоний

В 1781 году английский астроном Уильям Гершель открыл новую планету, которую назвали Ураном - по имени древнегреческого бога неба Урана, деда Зевса. В 1789 году М. Клапрот выделил из минерала смоляной обманки чёрное тяжёлое вещество, которое он принял за металл и, по традиции алхимиков, «привязал» его название к недавно открытой планете. А смоляную обманку он переименовал в урановую смолку (именно с ней работали супруги Кюри). Лишь спустя 52 года выяснилось, что Клапрот получил не сам уран, а его оксид UO2.

В 1846 году астрономы открыли предсказанную незадолго до этого французским астрономом Леверье новую планету. Её назвали Нептуном - по имени древнегреческого бога подводного царства. Когда в 1850 году в минерале, привезенном в Европу из США, обнаружили, как полагали, новый металл, его, под впечатлением открытия астрономов, предложили назвать нептунием. Однако вскоре выяснилось, что это был уже открытый ранее ниобий. О «нептунии» забыли почти на целое столетие, пока в продуктах облучения урана нейтронами не обнаружили новый элемент. И как в Солнечной системе за Ураном следует Нептун, так и в таблице элементов за ураном (№ 92) появился нептуний (№ 93).

В 1930 году была открыта девятая планета Солнечной системы, предсказанная американским астрономом Ловеллом. Её назвали Плутоном - по имени древнегреческого бога подземного царства. Поэтому было логично назвать следующий за нептунием элемент плутонием; он был получен в 1940 году в результате бомбардировки урана ядрами дейтерия.

Гелий

Обычно пишут, что его открыли спектральным методом Жансен и Локьер, наблюдая полное солнечное затмение в 1868 году. На самом деле всё было не так просто. Спустя несколько минут после окончания солнечного затмения, которое французский физик Пьер Жюль Жансен наблюдал 18 августа 1868 года в Индии, ему впервые удалось увидеть спектр солнечных протуберанцев. Аналогичные наблюдения провёл английский астроном Джозеф Норман Локьер 20 октября того же года в Лондоне, особо подчеркнув, что его способ позволяет изучать солнечную атмосферу во вне-затменное время. Новые исследования солнечной атмосферы произвели большое впечатление: в честь этого события Парижская академия наук вынесла постановление о чеканке золотой медали с профилями учёных. При этом ни о каком новом элементе речи не было.

Итальянский астроном Анджело Секки 13 ноября того же года обратил внимание на «замечательную линию» в солнечном спектре вблизи известной жёлтой D-линии натрия. Он предположил, что эту линию испускает водород, находящийся в экстремальных условиях. И только в январе 1871 года Локьер высказал идею, что эта линия может принадлежать новому элементу. Впервые слово «гелий» произнёс в своей речи президент Британской ассоциации содействия наукам Уильям Томсон в июле того же года. Название было дано по имени древнегреческого бога солнца Гелиоса. В 1895 году английский химик Уильям Рамзай собрал выделенный из уранового минерала клевеита при его обработке кислотой неизвестный газ и с помощью Локьера исследовал его спектральным методом. В результате «солнечный» элемент был обнаружен и на Земле.

Цинк

Слово «цинк» ввёл в русский язык М.В. Ломоносов - от немецкого Zink. Вероятно оно происходит от древнегерманского tinka - белый, действительно, самый распространённый препарат цинка - оксид ZnO («философская шерсть» алхимиков) имеет белый цвет.

Фосфор

Когда в 1669 году гамбургский алхимик Хеннинг Бранд открыл белую модификацию фосфора, он был поражён его свечением в темноте (на самом деле светится не фосфор а его пары при их окислении кислородом воздуха). Новое вещество получило название, которое в переводе с греческого означает «несущий свет». Так что «светофор» - лингвистически то же самое, что и «Люцифер». Кстати, греки называли Фосфоросом утреннюю Венеру, которая предвещала восход солнца.

Мышьяк

Русское название, наиболее вероятно, связано с ядом которым травили мышей, помимо прочего, по цвету серый мышьяк напоминает мышь. Латинское arsenicum восходит к греческому «арсеникос» - мужской, вероятно, по сильному действию соединений этого элемента. А для чего их использовали, благодаря художественной литературе знают все.

Сурьма

В химии у этого элемента три названия. Русское слово «сурьма» происходит от турецкого «сюрме» - натирание или чернение бровей в древности краской для этого служил тонко размолотый чёрный сульфид сурьмы Sb2S3 («Ты постом говей, не сурьми бровей». - М. Цветаева). Латинское название элемента (stibium) происходит от греческого «стиби» - косметического средства для подведения глаз и лечения глазных болезней. Соли сурьмяной кислоты называют антимонитами, название, возможно, связано с греческим «антемон» - цветок сростки игольчатых кристаллов сурьмяного блеска Sb2S2 похожи на цветы.

Висмут

Вероятно это искажённое немецкое «weisse Masse» - белая масса с древности были известны белые с красноватым оттенком самородки висмута. Кстати в западноевропейских языках (кроме немецкого) название элемента начинается на «b» (bismuth). Замена латинского «b» русским «в» - распространённое явление Abel - Авель, Basil - Василий, basilisk - василиск, Barbara - Варвара, barbarism - варварство, Benjamin - Вениамин, Bartholomew - Варфоломей, Babylon - Вавилон, Byzantium - Византия, Lebanon - Ливан, Libya - Ливия, Baal - Ваал, alphabet - алфавит… Возможно переводчики полагали, что греческая «бета» - это русская «в».

© 2024 skudelnica.ru -- Любовь, измена, психология, развод, чувства, ссоры