गणितीय अभिव्यक्तियों में क्रिया का क्रम। विषय पर गणित (ग्रेड 3) में शैक्षिक और पद्धति संबंधी सामग्री: क्रियाओं के क्रम के उदाहरण

घर / तलाक
ईसा पूर्व पाँचवीं शताब्दी में, प्राचीन यूनानी दार्शनिक ज़ेनो ऑफ़ एलिया ने अपना प्रसिद्ध एपोरिया तैयार किया, जिनमें से सबसे प्रसिद्ध "अकिलीज़ एंड द टोर्टोइज़" एपोरिया है। यहाँ यह कैसा लगता है:

मान लीजिए कि अकिलिस कछुए से दस गुना तेज दौड़ता है और उससे एक हजार कदम पीछे है। अकिलिस को इस दूरी तक दौड़ने में जितना समय लगेगा, कछुआ उसी दिशा में सौ कदम रेंगेगा। जब अकिलिस सौ कदम दौड़ता है, तो कछुआ दस कदम और रेंगता है, इत्यादि। यह प्रक्रिया अनंत काल तक जारी रहेगी, अकिलिस कछुए को कभी नहीं पकड़ पाएगा।

यह तर्क बाद की सभी पीढ़ियों के लिए एक तार्किक झटका बन गया। अरस्तू, डायोजनीज, कांट, हेगेल, हिल्बर्ट... वे सभी किसी न किसी रूप में ज़ेनो के एपोरिया पर विचार करते थे। झटका इतना जोरदार था कि " ... चर्चाएँ आज भी जारी हैं; वैज्ञानिक समुदाय अभी तक विरोधाभासों के सार पर एक आम राय नहीं बना पाया है ... मुद्दे के अध्ययन में गणितीय विश्लेषण, सेट सिद्धांत, नए भौतिक और दार्शनिक दृष्टिकोण शामिल थे ; उनमें से कोई भी समस्या का आम तौर पर स्वीकृत समाधान नहीं बन सका..."[विकिपीडिया, "ज़ेनो'स अपोरिया"। हर कोई समझता है कि उन्हें मूर्ख बनाया जा रहा है, लेकिन कोई नहीं समझता कि धोखे में क्या शामिल है।

गणितीय दृष्टिकोण से, ज़ेनो ने अपने एपोरिया में स्पष्ट रूप से मात्रा से संक्रमण का प्रदर्शन किया। इस परिवर्तन का तात्पर्य स्थायी के बजाय अनुप्रयोग से है। जहां तक ​​मैं समझता हूं, माप की परिवर्तनीय इकाइयों का उपयोग करने के लिए गणितीय उपकरण या तो अभी तक विकसित नहीं हुआ है, या इसे ज़ेनो के एपोरिया पर लागू नहीं किया गया है। अपने सामान्य तर्क को लागू करने से हम एक जाल में फंस जाते हैं। हम, सोच की जड़ता के कारण, समय की निरंतर इकाइयों को पारस्परिक मूल्य पर लागू करते हैं। भौतिक दृष्टिकोण से, ऐसा लगता है कि समय धीमा हो रहा है जब तक कि यह उस समय पूरी तरह से बंद न हो जाए जब अकिलिस कछुए को पकड़ लेता है। यदि समय रुक जाता है, तो अकिलिस कछुए से आगे नहीं निकल सकता।

यदि हम अपने सामान्य तर्क को पलट दें, तो सब कुछ ठीक हो जाता है। अकिलिस स्थिर गति से दौड़ता है। उसके पथ का प्रत्येक अगला खंड पिछले वाले से दस गुना छोटा है। तदनुसार, इस पर काबू पाने में लगने वाला समय पिछले वाले की तुलना में दस गुना कम है। यदि हम इस स्थिति में "अनंत" की अवधारणा को लागू करते हैं, तो यह कहना सही होगा कि "अकिलीज़ कछुए को असीम रूप से जल्दी पकड़ लेगा।"

इस तार्किक जाल से कैसे बचें? समय की स्थिर इकाइयों में रहें और पारस्परिक इकाइयों पर स्विच न करें। ज़ेनो की भाषा में यह इस तरह दिखता है:

अकिलिस को एक हजार कदम चलने में जितना समय लगता है, कछुआ उसी दिशा में सौ कदम रेंगता है। पहले के बराबर अगले समय अंतराल के दौरान, अकिलिस एक और हजार कदम दौड़ेगा, और कछुआ सौ कदम रेंगेगा। अब अकिलिस कछुए से आठ सौ कदम आगे है।

यह दृष्टिकोण बिना किसी तार्किक विरोधाभास के वास्तविकता का पर्याप्त रूप से वर्णन करता है। लेकिन यह समस्या का पूर्ण समाधान नहीं है. प्रकाश की गति की अप्रतिरोध्यता के बारे में आइंस्टीन का कथन ज़ेनो के एपोरिया "अकिलीज़ एंड द टोर्टोइज़" के समान है। हमें अभी भी इस समस्या का अध्ययन, पुनर्विचार और समाधान करना होगा। और समाधान असीमित बड़ी संख्या में नहीं, बल्कि माप की इकाइयों में खोजा जाना चाहिए।

ज़ेनो का एक और दिलचस्प एपोरिया एक उड़ने वाले तीर के बारे में बताता है:

एक उड़ता हुआ तीर गतिहीन होता है, क्योंकि समय के प्रत्येक क्षण में वह विश्राम में होता है, और चूँकि वह समय के प्रत्येक क्षण में विश्राम में होता है, इसलिए वह सदैव विश्राम में ही रहता है।

इस एपोरिया में, तार्किक विरोधाभास को बहुत सरलता से दूर किया जाता है - यह स्पष्ट करने के लिए पर्याप्त है कि समय के प्रत्येक क्षण में एक उड़ता हुआ तीर अंतरिक्ष में विभिन्न बिंदुओं पर आराम कर रहा है, जो वास्तव में गति है। यहां एक और बात पर ध्यान देने की जरूरत है. सड़क पर एक कार की एक तस्वीर से उसकी गति के तथ्य या उससे दूरी का पता लगाना असंभव है। यह निर्धारित करने के लिए कि कोई कार चल रही है, आपको अलग-अलग समय पर एक ही बिंदु से ली गई दो तस्वीरों की आवश्यकता होगी, लेकिन आप उनसे दूरी निर्धारित नहीं कर सकते। किसी कार की दूरी निर्धारित करने के लिए, आपको एक ही समय में अंतरिक्ष में विभिन्न बिंदुओं से ली गई दो तस्वीरों की आवश्यकता होगी, लेकिन आप उनसे गति के तथ्य का निर्धारण नहीं कर सकते (बेशक, आपको अभी भी गणना के लिए अतिरिक्त डेटा की आवश्यकता है, त्रिकोणमिति आपकी मदद करेगी) ). मैं जिस बात पर विशेष ध्यान आकर्षित करना चाहता हूं वह यह है कि समय में दो बिंदु और अंतरिक्ष में दो बिंदु अलग-अलग चीजें हैं जिन्हें भ्रमित नहीं किया जाना चाहिए, क्योंकि वे अनुसंधान के लिए अलग-अलग अवसर प्रदान करते हैं।

बुधवार, 4 जुलाई 2018

विकिपीडिया पर सेट और मल्टीसेट के बीच अंतर को बहुत अच्छी तरह से वर्णित किया गया है। चलो देखते हैं।

जैसा कि आप देख सकते हैं, "एक सेट में दो समान तत्व नहीं हो सकते," लेकिन यदि किसी सेट में समान तत्व हैं, तो ऐसे सेट को "मल्टीसेट" कहा जाता है। समझदार प्राणी ऐसे बेतुके तर्क को कभी नहीं समझ पाएंगे। यह बोलने वाले तोतों और प्रशिक्षित बंदरों का स्तर है, जिनके पास "पूरी तरह से" शब्द से कोई बुद्धि नहीं है। गणितज्ञ सामान्य प्रशिक्षकों के रूप में कार्य करते हैं, और हमें अपने बेतुके विचारों का उपदेश देते हैं।

एक बार की बात है, पुल बनाने वाले इंजीनियर पुल का परीक्षण करते समय पुल के नीचे एक नाव में थे। यदि पुल ढह गया, तो औसत दर्जे का इंजीनियर अपनी रचना के मलबे के नीचे दबकर मर गया। यदि पुल भार सहन कर सका, तो प्रतिभाशाली इंजीनियर ने अन्य पुल बनाए।

इससे कोई फर्क नहीं पड़ता कि गणितज्ञ "मेरा ध्यान रखें, मैं घर में हूं" वाक्यांश के पीछे कैसे छिपते हैं, या बल्कि, "गणित अमूर्त अवधारणाओं का अध्ययन करता है," एक गर्भनाल है जो उन्हें वास्तविकता से जोड़ती है। यह नाल ही धन है। आइए हम गणितीय समुच्चय सिद्धांत को स्वयं गणितज्ञों पर लागू करें।

हमने गणित का बहुत अच्छा अध्ययन किया और अब हम कैश रजिस्टर पर बैठकर वेतन दे रहे हैं। तो एक गणितज्ञ अपने पैसे के लिए हमारे पास आता है। हम उसे पूरी राशि गिनते हैं और उसे अलग-अलग ढेरों में अपनी मेज पर रखते हैं, जिसमें हम एक ही मूल्यवर्ग के बिल डालते हैं। फिर हम प्रत्येक ढेर से एक बिल लेते हैं और गणितज्ञ को उसका "वेतन का गणितीय सेट" देते हैं। आइए गणितज्ञ को समझाएं कि उसे शेष बिल तभी प्राप्त होंगे जब वह यह साबित कर देगा कि समान तत्वों के बिना एक सेट समान तत्वों वाले सेट के बराबर नहीं है। मज़ा यहां शुरू होता है।

सबसे पहले, प्रतिनिधियों का तर्क काम करेगा: "यह दूसरों पर लागू किया जा सकता है, लेकिन मुझ पर नहीं!" फिर वे हमें आश्वस्त करना शुरू कर देंगे कि एक ही मूल्यवर्ग के बिलों में अलग-अलग बिल संख्याएँ होती हैं, जिसका अर्थ है कि उन्हें एक ही तत्व नहीं माना जा सकता है। ठीक है, आइए वेतन को सिक्कों में गिनें - सिक्कों पर कोई संख्या नहीं है। यहां गणितज्ञ भौतिकी को पागलपन से याद करना शुरू कर देगा: अलग-अलग सिक्कों में अलग-अलग मात्रा में गंदगी होती है, क्रिस्टल संरचना और परमाणुओं की व्यवस्था प्रत्येक सिक्के के लिए अद्वितीय होती है...

और अब मेरे पास सबसे दिलचस्प सवाल है: वह रेखा कहां है जिसके आगे एक मल्टीसेट के तत्व एक सेट के तत्वों में बदल जाते हैं और इसके विपरीत? ऐसी कोई रेखा मौजूद नहीं है - सब कुछ जादूगरों द्वारा तय किया जाता है, विज्ञान यहां झूठ बोलने के करीब भी नहीं है।

यहाँ देखो। हम समान फ़ील्ड क्षेत्र वाले फ़ुटबॉल स्टेडियमों का चयन करते हैं। फ़ील्ड का क्षेत्रफल समान है - जिसका अर्थ है कि हमारे पास एक मल्टीसेट है। लेकिन अगर हम इन्हीं स्टेडियमों के नाम देखें तो हमें कई मिलते हैं, क्योंकि नाम अलग-अलग हैं। जैसा कि आप देख सकते हैं, तत्वों का एक ही सेट एक सेट और मल्टीसेट दोनों है। कौन सा सही है? और यहां गणितज्ञ-शमन-शार्पिस्ट अपनी आस्तीन से तुरुप का इक्का निकालता है और हमें सेट या मल्टीसेट के बारे में बताना शुरू करता है। किसी भी स्थिति में, वह हमें विश्वास दिलाएगा कि वह सही है।

यह समझने के लिए कि आधुनिक जादूगर सेट सिद्धांत के साथ कैसे काम करते हैं, इसे वास्तविकता से जोड़ते हुए, एक प्रश्न का उत्तर देना पर्याप्त है: एक सेट के तत्व दूसरे सेट के तत्वों से कैसे भिन्न होते हैं? मैं आपको दिखाऊंगा, बिना किसी "एक पूरे के रूप में कल्पनीय" या "एक पूरे के रूप में कल्पनीय नहीं।"

रविवार, 18 मार्च 2018

किसी संख्या के अंकों का योग डफ के साथ जादूगरों का नृत्य है, जिसका गणित से कोई लेना-देना नहीं है। हां, गणित के पाठों में हमें किसी संख्या के अंकों का योग ज्ञात करना और उसका उपयोग करना सिखाया जाता है, लेकिन यही कारण है कि वे जादूगर हैं, अपने वंशजों को अपने कौशल और ज्ञान सिखाएं, अन्यथा जादूगर बस खत्म हो जाएंगे।

क्या आपको सबूत चाहिए? विकिपीडिया खोलें और "किसी संख्या के अंकों का योग" पृष्ठ ढूंढने का प्रयास करें। वह अस्तित्व में नहीं है. गणित में ऐसा कोई सूत्र नहीं है जिसका उपयोग किसी संख्या के अंकों का योग ज्ञात करने के लिए किया जा सके। आख़िरकार, संख्याएँ ग्राफिक प्रतीक हैं जिनके साथ हम संख्याएँ लिखते हैं, और गणित की भाषा में कार्य इस तरह लगता है: "किसी भी संख्या का प्रतिनिधित्व करने वाले ग्राफिक प्रतीकों का योग ज्ञात करें।" गणितज्ञ इस समस्या को हल नहीं कर सकते, लेकिन ओझा इसे आसानी से कर सकते हैं।

आइए जानें कि किसी दी गई संख्या के अंकों का योग ज्ञात करने के लिए हम क्या और कैसे करते हैं। और इसलिए, आइए हमारे पास संख्या 12345 है। इस संख्या के अंकों का योग ज्ञात करने के लिए क्या करने की आवश्यकता है? आइए क्रम से सभी चरणों पर विचार करें।

1. कागज के एक टुकड़े पर संख्या लिख ​​लें। हमने क्या किया है? हमने संख्या को ग्राफिकल संख्या प्रतीक में बदल दिया है। यह कोई गणितीय संक्रिया नहीं है.

2. हमने एक परिणामी चित्र को अलग-अलग संख्याओं वाले कई चित्रों में काटा। किसी चित्र को काटना कोई गणितीय क्रिया नहीं है।

3. व्यक्तिगत ग्राफ़िक प्रतीकों को संख्याओं में बदलें। यह कोई गणितीय संक्रिया नहीं है.

4. परिणामी संख्याएँ जोड़ें। अब ये गणित है.

संख्या 12345 के अंकों का योग 15 है। ये जादूगरों द्वारा पढ़ाए जाने वाले "काटने और सिलाई के पाठ्यक्रम" हैं जिनका उपयोग गणितज्ञ करते हैं। लेकिन यह बिलकुल भी नहीं है।

गणितीय दृष्टिकोण से, इससे कोई फर्क नहीं पड़ता कि हम किस संख्या प्रणाली में कोई संख्या लिखते हैं। इसलिए, अलग-अलग संख्या प्रणालियों में एक ही संख्या के अंकों का योग अलग-अलग होगा। गणित में, संख्या प्रणाली को संख्या के दाईं ओर एक सबस्क्रिप्ट के रूप में दर्शाया जाता है। बड़ी संख्या 12345 के साथ, मैं अपना सिर मूर्ख नहीं बनाना चाहता, आइए लेख से संख्या 26 पर विचार करें। आइए इस संख्या को बाइनरी, ऑक्टल, दशमलव और हेक्साडेसिमल संख्या प्रणालियों में लिखें। हम हर कदम को माइक्रोस्कोप के नीचे नहीं देखेंगे; हम पहले ही ऐसा कर चुके हैं। आइये परिणाम पर नजर डालते हैं.

जैसा कि आप देख सकते हैं, विभिन्न संख्या प्रणालियों में एक ही संख्या के अंकों का योग अलग-अलग होता है। इस परिणाम का गणित से कोई लेना-देना नहीं है। यह वैसा ही है जैसे यदि आपने किसी आयत का क्षेत्रफल मीटर और सेंटीमीटर में निर्धारित किया है, तो आपको पूरी तरह से अलग परिणाम मिलेंगे।

शून्य सभी संख्या प्रणालियों में एक जैसा दिखता है और इसमें अंकों का कोई योग नहीं होता है। यह इस तथ्य के पक्ष में एक और तर्क है। गणितज्ञों के लिए प्रश्न: वह चीज़ कैसी है जो गणित में निर्दिष्ट संख्या नहीं है? क्या, गणितज्ञों के लिए संख्याओं के अलावा कुछ भी मौजूद नहीं है? मैं ओझाओं के लिए इसकी अनुमति दे सकता हूं, लेकिन वैज्ञानिकों के लिए नहीं। वास्तविकता सिर्फ संख्याओं के बारे में नहीं है।

प्राप्त परिणाम को इस बात का प्रमाण माना जाना चाहिए कि संख्या प्रणालियाँ संख्याओं के माप की इकाइयाँ हैं। आख़िरकार, हम संख्याओं की तुलना माप की विभिन्न इकाइयों से नहीं कर सकते। यदि एक ही मात्रा की माप की विभिन्न इकाइयों के साथ समान क्रियाओं की तुलना करने पर अलग-अलग परिणाम मिलते हैं, तो इसका गणित से कोई लेना-देना नहीं है।

वास्तविक गणित क्या है? ऐसा तब होता है जब गणितीय ऑपरेशन का परिणाम संख्या के आकार, उपयोग की गई माप की इकाई और इस क्रिया को करने वाले पर निर्भर नहीं करता है।

दरवाजे पर हस्ताक्षर करें वह दरवाज़ा खोलता है और कहता है:

ओह! क्या यह महिला शौचालय नहीं है?
- युवती! यह स्वर्ग में आरोहण के दौरान आत्माओं की अनिश्चित पवित्रता के अध्ययन के लिए एक प्रयोगशाला है! शीर्ष पर हेलो और ऊपर तीर. और कौन सा शौचालय?

महिला... शीर्ष पर प्रभामंडल और नीचे तीर पुरुष हैं।

यदि डिजाइन कला का ऐसा कोई काम आपकी आंखों के सामने दिन में कई बार चमकता है,

फिर यह आश्चर्य की बात नहीं है कि आपको अचानक अपनी कार में एक अजीब आइकन मिले:

व्यक्तिगत रूप से, मैं शौच कर रहे व्यक्ति (एक चित्र) में माइनस चार डिग्री देखने का प्रयास करता हूं (कई चित्रों की एक रचना: एक माइनस चिह्न, संख्या चार, डिग्री का एक पदनाम)। और मुझे नहीं लगता कि यह लड़की मूर्ख है जो भौतिकी नहीं जानती। उसके पास ग्राफिक छवियों को समझने की एक मजबूत रूढ़ि है। और गणितज्ञ हमें हर समय यही सिखाते हैं। यहाँ एक उदाहरण है.

1ए "शून्य से चार डिग्री" या "एक ए" नहीं है। यह हेक्साडेसिमल नोटेशन में "पूपिंग मैन" या संख्या "छब्बीस" है। जो लोग लगातार इस संख्या प्रणाली में काम करते हैं वे स्वचालित रूप से एक संख्या और एक अक्षर को एक ग्राफिक प्रतीक के रूप में समझते हैं।

यह पाठ कोष्ठक के बिना और कोष्ठक के साथ अभिव्यक्तियों में अंकगणितीय संचालन करने की प्रक्रिया पर विस्तार से चर्चा करता है। छात्रों को असाइनमेंट पूरा करते समय, यह निर्धारित करने का अवसर दिया जाता है कि क्या अभिव्यक्तियों का अर्थ उस क्रम पर निर्भर करता है जिसमें अंकगणितीय संचालन किया जाता है, यह पता लगाने के लिए कि क्या अंकगणितीय संचालन का क्रम कोष्ठक के बिना और कोष्ठक के साथ अभिव्यक्तियों में भिन्न है, लागू करने का अभ्यास करने के लिए कार्यों के क्रम को निर्धारित करते समय की गई त्रुटियों को खोजने और ठीक करने के लिए सीखा हुआ नियम।

जीवन में, हम लगातार कुछ न कुछ कार्य करते रहते हैं: हम चलते हैं, अध्ययन करते हैं, पढ़ते हैं, लिखते हैं, गिनते हैं, मुस्कुराते हैं, झगड़ते हैं और शांति बनाते हैं। हम ये क्रियाएं अलग-अलग क्रम में करते हैं। कभी-कभी उनकी अदला-बदली की जा सकती है, कभी-कभी नहीं। उदाहरण के लिए, सुबह स्कूल के लिए तैयार होते समय, आप पहले व्यायाम कर सकते हैं, फिर अपना बिस्तर बना सकते हैं, या इसके विपरीत। लेकिन आप पहले स्कूल नहीं जा सकते और फिर कपड़े नहीं पहन सकते।

गणित में, क्या अंकगणितीय संक्रियाओं को एक निश्चित क्रम में करना आवश्यक है?

की जाँच करें

आइए भावों की तुलना करें:
8-3+4 और 8-3+4

हम देखते हैं कि दोनों अभिव्यक्तियाँ बिल्कुल एक जैसी हैं।

आइए एक अभिव्यक्ति में बाएँ से दाएँ और दूसरे में दाएँ से बाएँ क्रियाएँ करें। आप क्रियाओं के क्रम को इंगित करने के लिए संख्याओं का उपयोग कर सकते हैं (चित्र 1)।

चावल। 1. प्रक्रिया

पहली अभिव्यक्ति में, हम पहले घटाव ऑपरेशन करेंगे और फिर परिणाम में संख्या 4 जोड़ देंगे।

दूसरी अभिव्यक्ति में, हम पहले योग का मान ज्ञात करते हैं, और फिर परिणामी परिणाम 7 को 8 में से घटाते हैं।

हम देखते हैं कि भावों के अर्थ भिन्न-भिन्न हैं।

आइए निष्कर्ष निकालें: अंकगणितीय संक्रियाओं को निष्पादित करने का क्रम बदला नहीं जा सकता.

आइए बिना कोष्ठक वाले व्यंजकों में अंकगणितीय संक्रियाएँ करने का नियम सीखें।

यदि कोष्ठक रहित अभिव्यक्ति में केवल जोड़ और घटाव या केवल गुणा और भाग शामिल है, तो क्रियाएं उसी क्रम में की जाती हैं जिसमें वे लिखे गए हैं।

का अभ्यास करते हैं।

अभिव्यक्ति पर विचार करें

इस अभिव्यक्ति में केवल जोड़ और घटाव संक्रियाएँ शामिल हैं। इन क्रियाओं को कहा जाता है प्रथम चरण की कार्रवाई.

हम क्रम में बाएं से दाएं क्रियाएं करते हैं (चित्र 2)।

चावल। 2. प्रक्रिया

दूसरी अभिव्यक्ति पर विचार करें

इस अभिव्यक्ति में केवल गुणा और भाग संक्रियाएँ शामिल हैं - ये दूसरे चरण की क्रियाएं हैं.

हम क्रम में बाएं से दाएं क्रियाएं करते हैं (चित्र 3)।

चावल। 3. प्रक्रिया

यदि अभिव्यक्ति में न केवल जोड़ और घटाव, बल्कि गुणा और भाग भी शामिल है, तो अंकगणितीय संक्रियाएं किस क्रम में की जाती हैं?

यदि कोष्ठक रहित अभिव्यक्ति में न केवल जोड़ और घटाव की संक्रियाएँ शामिल हैं, बल्कि गुणा और भाग, या ये दोनों संक्रियाएँ भी शामिल हैं, तो पहले क्रम में (बाएँ से दाएँ) गुणा और भाग करें, और फिर जोड़ और घटाव करें।

आइए अभिव्यक्ति को देखें.

आइए ऐसे सोचें. इस अभिव्यक्ति में जोड़ और घटाव, गुणा और भाग की संक्रियाएँ शामिल हैं। हम नियम के मुताबिक काम करते हैं.' सबसे पहले, हम क्रम में (बाएं से दाएं) गुणा और भाग करते हैं, और फिर जोड़ और घटाव करते हैं। आइए कार्यों के क्रम को व्यवस्थित करें।

आइए अभिव्यक्ति के मूल्य की गणना करें।

18:2-2*3+12:3=9-6+4=3+4=7

यदि किसी अभिव्यक्ति में कोष्ठक हैं तो अंकगणितीय संक्रियाएं किस क्रम में की जाती हैं?

यदि किसी अभिव्यक्ति में कोष्ठक हैं, तो कोष्ठक में अभिव्यक्ति के मूल्य का मूल्यांकन पहले किया जाता है।

आइए अभिव्यक्ति को देखें.

30 + 6 * (13 - 9)

हम देखते हैं कि इस अभिव्यक्ति में कोष्ठक में एक क्रिया है, जिसका अर्थ है कि हम पहले इस क्रिया को करेंगे, फिर क्रम से गुणा और जोड़ करेंगे। आइए कार्यों के क्रम को व्यवस्थित करें।

30 + 6 * (13 - 9)

आइए अभिव्यक्ति के मूल्य की गणना करें।

30+6*(13-9)=30+6*4=30+24=54

किसी संख्यात्मक अभिव्यक्ति में अंकगणितीय संक्रियाओं के क्रम को सही ढंग से स्थापित करने के लिए किसी को कैसे तर्क करना चाहिए?

गणना शुरू करने से पहले, आपको अभिव्यक्ति को देखना होगा (पता लगाएं कि इसमें कोष्ठक हैं या नहीं, इसमें कौन सी क्रियाएं हैं) और उसके बाद ही निम्नलिखित क्रम में क्रियाएं करें:

1. कोष्ठक में लिखी गई क्रियाएँ;

2. गुणा और भाग;

3. जोड़ और घटाव.

आरेख आपको इस सरल नियम को याद रखने में मदद करेगा (चित्र 4)।

चावल। 4. प्रक्रिया

का अभ्यास करते हैं।

आइए भावों पर विचार करें, क्रियाओं का क्रम स्थापित करें और गणना करें।

43 - (20 - 7) +15

32 + 9 * (19 - 16)

हम नियम के मुताबिक कार्रवाई करेंगे.' अभिव्यक्ति 43 - (20 - 7) +15 में कोष्ठक में संचालन, साथ ही जोड़ और घटाव संचालन शामिल हैं। आइए एक प्रक्रिया स्थापित करें. पहली क्रिया कोष्ठकों में संक्रिया करना है, और फिर बाएं से दाएं क्रम में घटाव और जोड़ करना है।

43 - (20 - 7) +15 =43 - 13 +15 = 30 + 15 = 45

अभिव्यक्ति 32 + 9 * (19 - 16) में कोष्ठक में संचालन, साथ ही गुणन और जोड़ संचालन शामिल हैं। नियम के अनुसार, हम पहले क्रिया को कोष्ठक में करते हैं, फिर गुणा करते हैं (घटाव द्वारा प्राप्त परिणाम से हम संख्या 9 को गुणा करते हैं) और जोड़ करते हैं।

32 + 9 * (19 - 16) =32 + 9 * 3 = 32 + 27 = 59

अभिव्यक्ति 2*9-18:3 में कोई कोष्ठक नहीं है, लेकिन गुणा, भाग और घटाव संक्रियाएँ हैं। हम नियम के मुताबिक काम करते हैं.' सबसे पहले, हम बाएँ से दाएँ गुणा और भाग करते हैं, और फिर भाग से प्राप्त परिणाम को गुणा द्वारा प्राप्त परिणाम से घटाते हैं। अर्थात पहली क्रिया है गुणा, दूसरी है भाग और तीसरी है घटाना।

2*9-18:3=18-6=12

आइए जानें कि निम्नलिखित अभिव्यक्तियों में क्रियाओं का क्रम सही ढंग से परिभाषित है या नहीं।

37 + 9 - 6: 2 * 3 =

18: (11 - 5) + 47=

7 * 3 - (16 + 4)=

आइए ऐसे सोचें.

37 + 9 - 6: 2 * 3 =

इस अभिव्यक्ति में कोई कोष्ठक नहीं है, जिसका अर्थ है कि हम पहले बाएँ से दाएँ गुणा या भाग करते हैं, फिर जोड़ या घटाव करते हैं। इस अभिव्यक्ति में पहली क्रिया विभाजन है, दूसरी गुणा है। तीसरी क्रिया जोड़, चौथी - घटाव होनी चाहिए। निष्कर्ष: प्रक्रिया सही ढंग से निर्धारित की गई है।

आइए इस अभिव्यक्ति का मूल्य ज्ञात करें।

37+9-6:2*3 =37+9-3*3=37+9-9=46-9=37

आइये बात करना जारी रखें.

दूसरी अभिव्यक्ति में कोष्ठक हैं, जिसका अर्थ है कि हम पहले क्रिया को कोष्ठक में करते हैं, फिर बाएं से दाएं गुणा या भाग, जोड़ या घटाव करते हैं। हम जाँचते हैं: पहली क्रिया कोष्ठक में है, दूसरी विभाजन है, तीसरी जोड़ है। निष्कर्ष: प्रक्रिया को गलत तरीके से परिभाषित किया गया है। आइए त्रुटियों को सुधारें और अभिव्यक्ति का अर्थ खोजें।

18:(11-5)+47=18:6+47=3+47=50

इस अभिव्यक्ति में कोष्ठक भी शामिल हैं, जिसका अर्थ है कि हम पहले क्रिया को कोष्ठक में करते हैं, फिर बाएं से दाएं गुणा या भाग, जोड़ या घटाव करते हैं। आइए जाँचें: पहली क्रिया कोष्ठक में है, दूसरी गुणा है, तीसरी घटाव है। निष्कर्ष: प्रक्रिया को गलत तरीके से परिभाषित किया गया है। आइए त्रुटियों को सुधारें और अभिव्यक्ति का अर्थ खोजें।

7*3-(16+4)=7*3-20=21-20=1

आइए कार्य पूरा करें.

आइए सीखे गए नियम का उपयोग करके अभिव्यक्ति में क्रियाओं के क्रम को व्यवस्थित करें (चित्र 5)।

चावल। 5. प्रक्रिया

हम संख्यात्मक मान नहीं देखते हैं, इसलिए हम अभिव्यक्तियों का अर्थ नहीं ढूंढ पाएंगे, लेकिन हमने जो नियम सीखा है उसे लागू करने का अभ्यास करेंगे।

हम एल्गोरिथम के अनुसार कार्य करते हैं।

पहली अभिव्यक्ति में कोष्ठक हैं, जिसका अर्थ है कि पहली क्रिया कोष्ठक में है। फिर बाएँ से दाएँ गुणा-भाग, फिर बाएँ से दाएँ घटाव और जोड़।

दूसरी अभिव्यक्ति में कोष्ठक भी शामिल है, जिसका अर्थ है कि हम पहली क्रिया कोष्ठक में करते हैं। उसके बाद बाएं से दाएं गुणा और भाग, उसके बाद घटाव.

आइए स्वयं जाँचें (चित्र 6)।

चावल। 6. प्रक्रिया

आज कक्षा में हमने कोष्ठक रहित और कोष्ठक सहित भावों में क्रियाओं के क्रम के नियम के बारे में सीखा।

ग्रन्थसूची

  1. एम.आई. मोरो, एम.ए. बंटोवा और अन्य। गणित: पाठ्यपुस्तक। तीसरी कक्षा: 2 भागों में, भाग 1. - एम.: "ज्ञानोदय", 2012।
  2. एम.आई. मोरो, एम.ए. बंटोवा और अन्य। गणित: पाठ्यपुस्तक। तीसरी कक्षा: 2 भागों में, भाग 2. - एम.: "ज्ञानोदय", 2012।
  3. एम.आई. मोरो. गणित पाठ: शिक्षकों के लिए पद्धति संबंधी सिफारिशें। तीसरा ग्रेड। - एम.: शिक्षा, 2012।
  4. विनियामक दस्तावेज़. सीखने के परिणामों की निगरानी और मूल्यांकन। - एम.: "ज्ञानोदय", 2011।
  5. "रूस का स्कूल": प्राथमिक विद्यालय के लिए कार्यक्रम। - एम.: "ज्ञानोदय", 2011।
  6. एस.आई. वोल्कोवा। गणित: परीक्षण कार्य. तीसरा ग्रेड। - एम.: शिक्षा, 2012।
  7. वी.एन. रुडनिट्स्काया। परीक्षण. - एम.: "परीक्षा", 2012।
  1. महोत्सव.1सितंबर.ru ()।
  2. Sosnovoborsk-soobchestva.ru ()।
  3. Openclass.ru ()।

गृहकार्य

1. इन भावों में क्रियाओं का क्रम निर्धारित करें। भावों का अर्थ ढूँढ़ें।

2. निर्धारित करें कि क्रियाओं का यह क्रम किस अभिव्यक्ति में किया जाता है:

1. गुणन; 2. विभाजन;. 3. जोड़; 4. घटाव; 5. जोड़. इस अभिव्यक्ति का अर्थ खोजें।

3. तीन अभिव्यक्तियाँ बनाइए जिनमें क्रियाओं का निम्नलिखित क्रम किया जाता है:

1. गुणन; 2. जोड़; 3. घटाव

1. जोड़; 2. घटाव; 3. जोड़

1. गुणन; 2. विभाजन; 3. जोड़

इन अभिव्यक्तियों का अर्थ खोजें।

क्रियाओं का क्रम - गणित तीसरी कक्षा (मोरो)

संक्षिप्त वर्णन:

जीवन में, आप लगातार विभिन्न क्रियाएं करते हैं: उठना, अपना चेहरा धोना, व्यायाम करना, नाश्ता करना, स्कूल जाना। क्या आपको लगता है कि इस प्रक्रिया को बदलना संभव है? उदाहरण के लिए, नाश्ता करें और फिर अपना चेहरा धो लें। संभवतः संभव है. यदि आप बिना नहाए हुए हैं तो नाश्ता करना बहुत सुविधाजनक नहीं हो सकता है, लेकिन इससे कुछ भी बुरा नहीं होगा। गणित में, क्या आपके विवेक पर संचालन के क्रम को बदलना संभव है? नहीं, गणित एक सटीक विज्ञान है, इसलिए प्रक्रिया में थोड़ा सा भी बदलाव इस तथ्य को जन्म देगा कि संख्यात्मक अभिव्यक्ति का उत्तर गलत हो जाएगा। दूसरी कक्षा में आप प्रक्रिया के कुछ नियमों से पहले ही परिचित हो चुके हैं। तो, आपको शायद याद होगा कि कार्यों के निष्पादन का क्रम कोष्ठक द्वारा नियंत्रित होता है। वे बताते हैं कि पहले कौन से कार्य पूरे करने की आवश्यकता है। प्रक्रिया के अन्य नियम क्या हैं? क्या कोष्ठक वाले और बिना कोष्ठक वाले भावों में संक्रियाओं का क्रम भिन्न-भिन्न है? इन सवालों के जवाब आपको तीसरी कक्षा की गणित की पाठ्यपुस्तक में "कार्यों का क्रम" विषय का अध्ययन करते समय मिलेंगे। आपको निश्चित रूप से आपके द्वारा सीखे गए नियमों को लागू करने का अभ्यास करना चाहिए, और यदि आवश्यक हो, तो संख्यात्मक अभिव्यक्तियों में क्रियाओं के क्रम को स्थापित करने में त्रुटियों को ढूंढना और ठीक करना चाहिए। कृपया याद रखें कि ऑर्डर किसी भी व्यवसाय में महत्वपूर्ण है, लेकिन गणित में यह विशेष रूप से महत्वपूर्ण है!

ईसा पूर्व पाँचवीं शताब्दी में, प्राचीन यूनानी दार्शनिक ज़ेनो ऑफ़ एलिया ने अपना प्रसिद्ध एपोरिया तैयार किया, जिनमें से सबसे प्रसिद्ध "अकिलीज़ एंड द टोर्टोइज़" एपोरिया है। यहाँ यह कैसा लगता है:

मान लीजिए कि अकिलिस कछुए से दस गुना तेज दौड़ता है और उससे एक हजार कदम पीछे है। अकिलिस को इस दूरी तक दौड़ने में जितना समय लगेगा, कछुआ उसी दिशा में सौ कदम रेंगेगा। जब अकिलिस सौ कदम दौड़ता है, तो कछुआ दस कदम और रेंगता है, इत्यादि। यह प्रक्रिया अनंत काल तक जारी रहेगी, अकिलिस कछुए को कभी नहीं पकड़ पाएगा।

यह तर्क बाद की सभी पीढ़ियों के लिए एक तार्किक झटका बन गया। अरस्तू, डायोजनीज, कांट, हेगेल, हिल्बर्ट... वे सभी किसी न किसी रूप में ज़ेनो के एपोरिया पर विचार करते थे। झटका इतना जोरदार था कि " ... चर्चाएँ आज भी जारी हैं; वैज्ञानिक समुदाय अभी तक विरोधाभासों के सार पर एक आम राय नहीं बना पाया है ... मुद्दे के अध्ययन में गणितीय विश्लेषण, सेट सिद्धांत, नए भौतिक और दार्शनिक दृष्टिकोण शामिल थे ; उनमें से कोई भी समस्या का आम तौर पर स्वीकृत समाधान नहीं बन सका..."[विकिपीडिया, "ज़ेनो'स अपोरिया"। हर कोई समझता है कि उन्हें मूर्ख बनाया जा रहा है, लेकिन कोई नहीं समझता कि धोखे में क्या शामिल है।

गणितीय दृष्टिकोण से, ज़ेनो ने अपने एपोरिया में स्पष्ट रूप से मात्रा से संक्रमण का प्रदर्शन किया। इस परिवर्तन का तात्पर्य स्थायी के बजाय अनुप्रयोग से है। जहां तक ​​मैं समझता हूं, माप की परिवर्तनीय इकाइयों का उपयोग करने के लिए गणितीय उपकरण या तो अभी तक विकसित नहीं हुआ है, या इसे ज़ेनो के एपोरिया पर लागू नहीं किया गया है। अपने सामान्य तर्क को लागू करने से हम एक जाल में फंस जाते हैं। हम, सोच की जड़ता के कारण, समय की निरंतर इकाइयों को पारस्परिक मूल्य पर लागू करते हैं। भौतिक दृष्टिकोण से, ऐसा लगता है कि समय धीमा हो रहा है जब तक कि यह उस समय पूरी तरह से बंद न हो जाए जब अकिलिस कछुए को पकड़ लेता है। यदि समय रुक जाता है, तो अकिलिस कछुए से आगे नहीं निकल सकता।

यदि हम अपने सामान्य तर्क को पलट दें, तो सब कुछ ठीक हो जाता है। अकिलिस स्थिर गति से दौड़ता है। उसके पथ का प्रत्येक अगला खंड पिछले वाले से दस गुना छोटा है। तदनुसार, इस पर काबू पाने में लगने वाला समय पिछले वाले की तुलना में दस गुना कम है। यदि हम इस स्थिति में "अनंत" की अवधारणा को लागू करते हैं, तो यह कहना सही होगा कि "अकिलीज़ कछुए को असीम रूप से जल्दी पकड़ लेगा।"

इस तार्किक जाल से कैसे बचें? समय की स्थिर इकाइयों में रहें और पारस्परिक इकाइयों पर स्विच न करें। ज़ेनो की भाषा में यह इस तरह दिखता है:

अकिलिस को एक हजार कदम चलने में जितना समय लगता है, कछुआ उसी दिशा में सौ कदम रेंगता है। पहले के बराबर अगले समय अंतराल के दौरान, अकिलिस एक और हजार कदम दौड़ेगा, और कछुआ सौ कदम रेंगेगा। अब अकिलिस कछुए से आठ सौ कदम आगे है।

यह दृष्टिकोण बिना किसी तार्किक विरोधाभास के वास्तविकता का पर्याप्त रूप से वर्णन करता है। लेकिन यह समस्या का पूर्ण समाधान नहीं है. प्रकाश की गति की अप्रतिरोध्यता के बारे में आइंस्टीन का कथन ज़ेनो के एपोरिया "अकिलीज़ एंड द टोर्टोइज़" के समान है। हमें अभी भी इस समस्या का अध्ययन, पुनर्विचार और समाधान करना होगा। और समाधान असीमित बड़ी संख्या में नहीं, बल्कि माप की इकाइयों में खोजा जाना चाहिए।

ज़ेनो का एक और दिलचस्प एपोरिया एक उड़ने वाले तीर के बारे में बताता है:

एक उड़ता हुआ तीर गतिहीन होता है, क्योंकि समय के प्रत्येक क्षण में वह विश्राम में होता है, और चूँकि वह समय के प्रत्येक क्षण में विश्राम में होता है, इसलिए वह सदैव विश्राम में ही रहता है।

इस एपोरिया में, तार्किक विरोधाभास को बहुत सरलता से दूर किया जाता है - यह स्पष्ट करने के लिए पर्याप्त है कि समय के प्रत्येक क्षण में एक उड़ता हुआ तीर अंतरिक्ष में विभिन्न बिंदुओं पर आराम कर रहा है, जो वास्तव में गति है। यहां एक और बात पर ध्यान देने की जरूरत है. सड़क पर एक कार की एक तस्वीर से उसकी गति के तथ्य या उससे दूरी का पता लगाना असंभव है। यह निर्धारित करने के लिए कि कोई कार चल रही है, आपको अलग-अलग समय पर एक ही बिंदु से ली गई दो तस्वीरों की आवश्यकता होगी, लेकिन आप उनसे दूरी निर्धारित नहीं कर सकते। किसी कार की दूरी निर्धारित करने के लिए, आपको एक ही समय में अंतरिक्ष में विभिन्न बिंदुओं से ली गई दो तस्वीरों की आवश्यकता होगी, लेकिन आप उनसे गति के तथ्य का निर्धारण नहीं कर सकते (बेशक, आपको अभी भी गणना के लिए अतिरिक्त डेटा की आवश्यकता है, त्रिकोणमिति आपकी मदद करेगी) ). मैं जिस बात पर विशेष ध्यान आकर्षित करना चाहता हूं वह यह है कि समय में दो बिंदु और अंतरिक्ष में दो बिंदु अलग-अलग चीजें हैं जिन्हें भ्रमित नहीं किया जाना चाहिए, क्योंकि वे अनुसंधान के लिए अलग-अलग अवसर प्रदान करते हैं।

बुधवार, 4 जुलाई 2018

विकिपीडिया पर सेट और मल्टीसेट के बीच अंतर को बहुत अच्छी तरह से वर्णित किया गया है। चलो देखते हैं।

जैसा कि आप देख सकते हैं, "एक सेट में दो समान तत्व नहीं हो सकते," लेकिन यदि किसी सेट में समान तत्व हैं, तो ऐसे सेट को "मल्टीसेट" कहा जाता है। समझदार प्राणी ऐसे बेतुके तर्क को कभी नहीं समझ पाएंगे। यह बोलने वाले तोतों और प्रशिक्षित बंदरों का स्तर है, जिनके पास "पूरी तरह से" शब्द से कोई बुद्धि नहीं है। गणितज्ञ सामान्य प्रशिक्षकों के रूप में कार्य करते हैं, और हमें अपने बेतुके विचारों का उपदेश देते हैं।

एक बार की बात है, पुल बनाने वाले इंजीनियर पुल का परीक्षण करते समय पुल के नीचे एक नाव में थे। यदि पुल ढह गया, तो औसत दर्जे का इंजीनियर अपनी रचना के मलबे के नीचे दबकर मर गया। यदि पुल भार सहन कर सका, तो प्रतिभाशाली इंजीनियर ने अन्य पुल बनाए।

इससे कोई फर्क नहीं पड़ता कि गणितज्ञ "मेरा ध्यान रखें, मैं घर में हूं" वाक्यांश के पीछे कैसे छिपते हैं, या बल्कि, "गणित अमूर्त अवधारणाओं का अध्ययन करता है," एक गर्भनाल है जो उन्हें वास्तविकता से जोड़ती है। यह नाल ही धन है। आइए हम गणितीय समुच्चय सिद्धांत को स्वयं गणितज्ञों पर लागू करें।

हमने गणित का बहुत अच्छा अध्ययन किया और अब हम कैश रजिस्टर पर बैठकर वेतन दे रहे हैं। तो एक गणितज्ञ अपने पैसे के लिए हमारे पास आता है। हम उसे पूरी राशि गिनते हैं और उसे अलग-अलग ढेरों में अपनी मेज पर रखते हैं, जिसमें हम एक ही मूल्यवर्ग के बिल डालते हैं। फिर हम प्रत्येक ढेर से एक बिल लेते हैं और गणितज्ञ को उसका "वेतन का गणितीय सेट" देते हैं। आइए गणितज्ञ को समझाएं कि उसे शेष बिल तभी प्राप्त होंगे जब वह यह साबित कर देगा कि समान तत्वों के बिना एक सेट समान तत्वों वाले सेट के बराबर नहीं है। मज़ा यहां शुरू होता है।

सबसे पहले, प्रतिनिधियों का तर्क काम करेगा: "यह दूसरों पर लागू किया जा सकता है, लेकिन मुझ पर नहीं!" फिर वे हमें आश्वस्त करना शुरू कर देंगे कि एक ही मूल्यवर्ग के बिलों में अलग-अलग बिल संख्याएँ होती हैं, जिसका अर्थ है कि उन्हें एक ही तत्व नहीं माना जा सकता है। ठीक है, आइए वेतन को सिक्कों में गिनें - सिक्कों पर कोई संख्या नहीं है। यहां गणितज्ञ भौतिकी को पागलपन से याद करना शुरू कर देगा: अलग-अलग सिक्कों में अलग-अलग मात्रा में गंदगी होती है, क्रिस्टल संरचना और परमाणुओं की व्यवस्था प्रत्येक सिक्के के लिए अद्वितीय होती है...

और अब मेरे पास सबसे दिलचस्प सवाल है: वह रेखा कहां है जिसके आगे एक मल्टीसेट के तत्व एक सेट के तत्वों में बदल जाते हैं और इसके विपरीत? ऐसी कोई रेखा मौजूद नहीं है - सब कुछ जादूगरों द्वारा तय किया जाता है, विज्ञान यहां झूठ बोलने के करीब भी नहीं है।

यहाँ देखो। हम समान फ़ील्ड क्षेत्र वाले फ़ुटबॉल स्टेडियमों का चयन करते हैं। फ़ील्ड का क्षेत्रफल समान है - जिसका अर्थ है कि हमारे पास एक मल्टीसेट है। लेकिन अगर हम इन्हीं स्टेडियमों के नाम देखें तो हमें कई मिलते हैं, क्योंकि नाम अलग-अलग हैं। जैसा कि आप देख सकते हैं, तत्वों का एक ही सेट एक सेट और मल्टीसेट दोनों है। कौन सा सही है? और यहां गणितज्ञ-शमन-शार्पिस्ट अपनी आस्तीन से तुरुप का इक्का निकालता है और हमें सेट या मल्टीसेट के बारे में बताना शुरू करता है। किसी भी स्थिति में, वह हमें विश्वास दिलाएगा कि वह सही है।

यह समझने के लिए कि आधुनिक जादूगर सेट सिद्धांत के साथ कैसे काम करते हैं, इसे वास्तविकता से जोड़ते हुए, एक प्रश्न का उत्तर देना पर्याप्त है: एक सेट के तत्व दूसरे सेट के तत्वों से कैसे भिन्न होते हैं? मैं आपको दिखाऊंगा, बिना किसी "एक पूरे के रूप में कल्पनीय" या "एक पूरे के रूप में कल्पनीय नहीं।"

रविवार, 18 मार्च 2018

किसी संख्या के अंकों का योग डफ के साथ जादूगरों का नृत्य है, जिसका गणित से कोई लेना-देना नहीं है। हां, गणित के पाठों में हमें किसी संख्या के अंकों का योग ज्ञात करना और उसका उपयोग करना सिखाया जाता है, लेकिन यही कारण है कि वे जादूगर हैं, अपने वंशजों को अपने कौशल और ज्ञान सिखाएं, अन्यथा जादूगर बस खत्म हो जाएंगे।

क्या आपको सबूत चाहिए? विकिपीडिया खोलें और "किसी संख्या के अंकों का योग" पृष्ठ ढूंढने का प्रयास करें। वह अस्तित्व में नहीं है. गणित में ऐसा कोई सूत्र नहीं है जिसका उपयोग किसी संख्या के अंकों का योग ज्ञात करने के लिए किया जा सके। आख़िरकार, संख्याएँ ग्राफिक प्रतीक हैं जिनके साथ हम संख्याएँ लिखते हैं, और गणित की भाषा में कार्य इस तरह लगता है: "किसी भी संख्या का प्रतिनिधित्व करने वाले ग्राफिक प्रतीकों का योग ज्ञात करें।" गणितज्ञ इस समस्या को हल नहीं कर सकते, लेकिन ओझा इसे आसानी से कर सकते हैं।

आइए जानें कि किसी दी गई संख्या के अंकों का योग ज्ञात करने के लिए हम क्या और कैसे करते हैं। और इसलिए, आइए हमारे पास संख्या 12345 है। इस संख्या के अंकों का योग ज्ञात करने के लिए क्या करने की आवश्यकता है? आइए क्रम से सभी चरणों पर विचार करें।

1. कागज के एक टुकड़े पर संख्या लिख ​​लें। हमने क्या किया है? हमने संख्या को ग्राफिकल संख्या प्रतीक में बदल दिया है। यह कोई गणितीय संक्रिया नहीं है.

2. हमने एक परिणामी चित्र को अलग-अलग संख्याओं वाले कई चित्रों में काटा। किसी चित्र को काटना कोई गणितीय क्रिया नहीं है।

3. व्यक्तिगत ग्राफ़िक प्रतीकों को संख्याओं में बदलें। यह कोई गणितीय संक्रिया नहीं है.

4. परिणामी संख्याएँ जोड़ें। अब ये गणित है.

संख्या 12345 के अंकों का योग 15 है। ये जादूगरों द्वारा पढ़ाए जाने वाले "काटने और सिलाई के पाठ्यक्रम" हैं जिनका उपयोग गणितज्ञ करते हैं। लेकिन यह बिलकुल भी नहीं है।

गणितीय दृष्टिकोण से, इससे कोई फर्क नहीं पड़ता कि हम किस संख्या प्रणाली में कोई संख्या लिखते हैं। इसलिए, अलग-अलग संख्या प्रणालियों में एक ही संख्या के अंकों का योग अलग-अलग होगा। गणित में, संख्या प्रणाली को संख्या के दाईं ओर एक सबस्क्रिप्ट के रूप में दर्शाया जाता है। बड़ी संख्या 12345 के साथ, मैं अपना सिर मूर्ख नहीं बनाना चाहता, आइए लेख से संख्या 26 पर विचार करें। आइए इस संख्या को बाइनरी, ऑक्टल, दशमलव और हेक्साडेसिमल संख्या प्रणालियों में लिखें। हम हर कदम को माइक्रोस्कोप के नीचे नहीं देखेंगे; हम पहले ही ऐसा कर चुके हैं। आइये परिणाम पर नजर डालते हैं.

जैसा कि आप देख सकते हैं, विभिन्न संख्या प्रणालियों में एक ही संख्या के अंकों का योग अलग-अलग होता है। इस परिणाम का गणित से कोई लेना-देना नहीं है। यह वैसा ही है जैसे यदि आपने किसी आयत का क्षेत्रफल मीटर और सेंटीमीटर में निर्धारित किया है, तो आपको पूरी तरह से अलग परिणाम मिलेंगे।

शून्य सभी संख्या प्रणालियों में एक जैसा दिखता है और इसमें अंकों का कोई योग नहीं होता है। यह इस तथ्य के पक्ष में एक और तर्क है। गणितज्ञों के लिए प्रश्न: वह चीज़ कैसी है जो गणित में निर्दिष्ट संख्या नहीं है? क्या, गणितज्ञों के लिए संख्याओं के अलावा कुछ भी मौजूद नहीं है? मैं ओझाओं के लिए इसकी अनुमति दे सकता हूं, लेकिन वैज्ञानिकों के लिए नहीं। वास्तविकता सिर्फ संख्याओं के बारे में नहीं है।

प्राप्त परिणाम को इस बात का प्रमाण माना जाना चाहिए कि संख्या प्रणालियाँ संख्याओं के माप की इकाइयाँ हैं। आख़िरकार, हम संख्याओं की तुलना माप की विभिन्न इकाइयों से नहीं कर सकते। यदि एक ही मात्रा की माप की विभिन्न इकाइयों के साथ समान क्रियाओं की तुलना करने पर अलग-अलग परिणाम मिलते हैं, तो इसका गणित से कोई लेना-देना नहीं है।

वास्तविक गणित क्या है? ऐसा तब होता है जब गणितीय ऑपरेशन का परिणाम संख्या के आकार, उपयोग की गई माप की इकाई और इस क्रिया को करने वाले पर निर्भर नहीं करता है।

दरवाजे पर हस्ताक्षर करें वह दरवाज़ा खोलता है और कहता है:

ओह! क्या यह महिला शौचालय नहीं है?
- युवती! यह स्वर्ग में आरोहण के दौरान आत्माओं की अनिश्चित पवित्रता के अध्ययन के लिए एक प्रयोगशाला है! शीर्ष पर हेलो और ऊपर तीर. और कौन सा शौचालय?

महिला... शीर्ष पर प्रभामंडल और नीचे तीर पुरुष हैं।

यदि डिजाइन कला का ऐसा कोई काम आपकी आंखों के सामने दिन में कई बार चमकता है,

फिर यह आश्चर्य की बात नहीं है कि आपको अचानक अपनी कार में एक अजीब आइकन मिले:

व्यक्तिगत रूप से, मैं शौच कर रहे व्यक्ति (एक चित्र) में माइनस चार डिग्री देखने का प्रयास करता हूं (कई चित्रों की एक रचना: एक माइनस चिह्न, संख्या चार, डिग्री का एक पदनाम)। और मुझे नहीं लगता कि यह लड़की मूर्ख है जो भौतिकी नहीं जानती। उसके पास ग्राफिक छवियों को समझने की एक मजबूत रूढ़ि है। और गणितज्ञ हमें हर समय यही सिखाते हैं। यहाँ एक उदाहरण है.

1ए "शून्य से चार डिग्री" या "एक ए" नहीं है। यह हेक्साडेसिमल नोटेशन में "पूपिंग मैन" या संख्या "छब्बीस" है। जो लोग लगातार इस संख्या प्रणाली में काम करते हैं वे स्वचालित रूप से एक संख्या और एक अक्षर को एक ग्राफिक प्रतीक के रूप में समझते हैं।

जब हम विभिन्न अभिव्यक्तियों के साथ काम करते हैं जिनमें संख्याएं, अक्षर और चर शामिल होते हैं, तो हमें बड़ी संख्या में अंकगणितीय ऑपरेशन करने पड़ते हैं। जब हम कोई रूपांतरण करते हैं या किसी मूल्य की गणना करते हैं, तो इन क्रियाओं के सही क्रम का पालन करना बहुत महत्वपूर्ण है। दूसरे शब्दों में, अंकगणितीय संक्रियाओं के निष्पादन का अपना विशेष क्रम होता है।

Yandex.RTB R-A-339285-1

इस लेख में हम आपको बताएंगे कि कौन से कार्य पहले करने चाहिए और कौन से बाद में। सबसे पहले, आइए कुछ सरल अभिव्यक्तियों को देखें जिनमें केवल चर या संख्यात्मक मान, साथ ही विभाजन, गुणा, घटाव और जोड़ चिह्न शामिल हैं। तो आइए कोष्ठक के साथ उदाहरण लें और विचार करें कि उनकी गणना किस क्रम में की जानी चाहिए। तीसरे भाग में हम उन उदाहरणों में परिवर्तनों और गणनाओं का आवश्यक क्रम देंगे जिनमें जड़ों, शक्तियों और अन्य कार्यों के संकेत शामिल हैं।

परिभाषा 1

कोष्ठक के बिना अभिव्यक्तियों के मामले में, क्रियाओं का क्रम स्पष्ट रूप से निर्धारित किया जाता है:

  1. सभी क्रियाएँ बाएँ से दाएँ की ओर की जाती हैं।
  2. हम भाग और गुणा पहले करते हैं, और घटाव और जोड़ बाद में करते हैं।

इन नियमों का मतलब समझना आसान है. पारंपरिक बाएँ से दाएँ लेखन क्रम गणनाओं के मूल अनुक्रम को परिभाषित करता है, और पहले गुणा या भाग करने की आवश्यकता को इन कार्यों के सार द्वारा समझाया गया है।

आइए स्पष्टता के लिए कुछ कार्य करें। हमने केवल सबसे सरल संख्यात्मक अभिव्यक्तियों का उपयोग किया ताकि सभी गणनाएँ मानसिक रूप से की जा सकें। इस तरह आप वांछित आदेश को तुरंत याद कर सकते हैं और परिणामों की तुरंत जांच कर सकते हैं।

उदाहरण 1

स्थिति:गणना करें कि यह कितना होगा 7 − 3 + 6 .

समाधान

हमारी अभिव्यक्ति में कोई कोष्ठक नहीं है, गुणा-भाग भी नहीं है, इसलिए हम सभी क्रियाएं निर्दिष्ट क्रम में करते हैं। पहले हम सात में से तीन घटाते हैं, फिर शेष में छह जोड़ते हैं और दस पर समाप्त होते हैं। यहां संपूर्ण समाधान का एक प्रतिलेख है:

7 − 3 + 6 = 4 + 6 = 10

उत्तर: 7 − 3 + 6 = 10 .

उदाहरण 2

स्थिति:अभिव्यक्ति में गणना किस क्रम में की जानी चाहिए? 6:2 8:3?

समाधान

इस प्रश्न का उत्तर देने के लिए, आइए बिना कोष्ठक वाले व्यंजकों के नियम को दोबारा पढ़ें जिसे हमने पहले तैयार किया था। हमारे यहाँ केवल गुणा और भाग है, जिसका अर्थ है कि हम गणनाओं का लिखित क्रम रखते हैं और क्रमिक रूप से बाएँ से दाएँ गिनती करते हैं।

उत्तर:पहले हम छह को दो से विभाजित करते हैं, परिणाम को आठ से गुणा करते हैं और परिणामी संख्या को तीन से विभाजित करते हैं।

उदाहरण 3

स्थिति:गणना करें कि यह कितना होगा 17 − 5 · 6: 3 − 2 + 4: 2.

समाधान

सबसे पहले, आइए संक्रियाओं का सही क्रम निर्धारित करें, क्योंकि हमारे यहां सभी बुनियादी प्रकार के अंकगणितीय संक्रियाएं हैं - जोड़, घटाव, गुणा, भाग। पहली चीज़ जो हमें करने की ज़रूरत है वह है विभाजित करना और गुणा करना। इन क्रियाओं की एक-दूसरे पर प्राथमिकता नहीं होती, इसलिए हम इन्हें दाएँ से बाएँ लिखित क्रम में करते हैं। अर्थात्, 30 प्राप्त करने के लिए 5 को 6 से गुणा करना होगा, फिर 10 प्राप्त करने के लिए 30 को 3 से विभाजित करना होगा। इसके बाद 4 को 2 से भाग दें तो 2 आता है. आइए पाए गए मानों को मूल अभिव्यक्ति में प्रतिस्थापित करें:

17 − 5 6: 3 − 2 + 4: 2 = 17 − 10 − 2 + 2

यहां अब कोई भाग या गुणा नहीं है, इसलिए हम शेष गणना क्रम में करते हैं और उत्तर प्राप्त करते हैं:

17 − 10 − 2 + 2 = 7 − 2 + 2 = 5 + 2 = 7

उत्तर:17 − 5 6: 3 − 2 + 4: 2 = 7.

जब तक कार्यों को करने का क्रम दृढ़ता से याद नहीं हो जाता, तब तक आप गणना के क्रम को इंगित करने वाले अंकगणितीय संक्रियाओं के संकेतों के ऊपर संख्याएँ रख सकते हैं। उदाहरण के लिए, उपरोक्त समस्या के लिए हम इसे इस प्रकार लिख सकते हैं:

यदि हमारे पास अक्षर अभिव्यक्तियाँ हैं, तो हम उनके साथ भी ऐसा ही करते हैं: पहले हम गुणा और भाग करते हैं, फिर हम जोड़ते और घटाते हैं।

प्रथम और द्वितीय चरण की क्रियाएँ क्या हैं?

कभी-कभी संदर्भ पुस्तकों में सभी अंकगणितीय संक्रियाओं को पहले और दूसरे चरण की क्रियाओं में विभाजित किया जाता है। आइए हम आवश्यक परिभाषा तैयार करें।

पहले चरण के संचालन में घटाव और जोड़ शामिल हैं, दूसरे में - गुणा और भाग।

इन नामों को जानकर हम क्रियाओं के क्रम के संबंध में पहले दिए गए नियम को इस प्रकार लिख सकते हैं:

परिभाषा 2

ऐसे अभिव्यक्ति में जिसमें कोष्ठक नहीं हैं, आपको पहले दूसरे चरण की क्रियाएं बाएं से दाएं दिशा में करनी होंगी, फिर पहले चरण की क्रियाएं (उसी दिशा में) करनी होंगी।

कोष्ठक सहित भावों में गणना का क्रम

कोष्ठक स्वयं एक संकेत है जो हमें कार्यों का वांछित क्रम बताता है। इस मामले में, आवश्यक नियम इस प्रकार लिखा जा सकता है:

परिभाषा 3

यदि अभिव्यक्ति में कोष्ठक हैं, तो पहला कदम उनमें ऑपरेशन करना है, जिसके बाद हम गुणा और भाग करते हैं, और फिर बाएं से दाएं जोड़ते और घटाते हैं।

जहां तक ​​कोष्ठक अभिव्यक्ति का प्रश्न है, इसे मुख्य अभिव्यक्ति का अभिन्न अंग माना जा सकता है। कोष्ठक में व्यंजक के मान की गणना करते समय, हम वही प्रक्रिया अपनाते हैं जो हमें ज्ञात है। आइए अपने विचार को एक उदाहरण से स्पष्ट करें।

उदाहरण 4

स्थिति:गणना करें कि यह कितना होगा 5 + (7 − 2 3) (6 − 4) : 2.

समाधान

इस अभिव्यक्ति में कोष्ठक हैं, तो चलिए उनसे शुरू करते हैं। सबसे पहले, आइए गणना करें कि 7 - 2 · 3 कितना होगा। यहां हमें 2 को 3 से गुणा करना होगा और परिणाम को 7 से घटाना होगा:

7 − 2 3 = 7 − 6 = 1

हम दूसरे कोष्ठक में परिणाम की गणना करते हैं। वहां हमारी केवल एक ही क्रिया है: 6 − 4 = 2 .

अब हमें परिणामी मानों को मूल अभिव्यक्ति में प्रतिस्थापित करने की आवश्यकता है:

5 + (7 − 2 3) (6 − 4) : 2 = 5 + 1 2: 2

आइए गुणा और भाग से शुरू करें, फिर घटाव करें और प्राप्त करें:

5 + 1 2: 2 = 5 + 2: 2 = 5 + 1 = 6

इससे गणना समाप्त होती है।

उत्तर: 5 + (7 − 2 3) (6 − 4) : 2 = 6.

अगर हमारी स्थिति में कोई अभिव्यक्ति शामिल है जिसमें कुछ कोष्ठक दूसरों को संलग्न करते हैं, तो चिंतित न हों। हमें केवल उपरोक्त नियम को कोष्ठक में सभी अभिव्यक्तियों पर लगातार लागू करने की आवश्यकता है। आइए इस समस्या को लें।

उदाहरण 5

स्थिति:गणना करें कि यह कितना होगा 4 + (3 + 1 + 4 (2 + 3)).

समाधान

हमारे पास कोष्ठकों के भीतर कोष्ठक हैं। हम 3 + 1 + 4 · (2 ​​+ 3), यानी 2 + 3 से शुरू करते हैं। 5 बजे होंगे. मान को अभिव्यक्ति में प्रतिस्थापित करने और गणना करने की आवश्यकता होगी कि 3 + 1 + 4 · 5। हमें याद है कि हमें पहले गुणा करना होगा और फिर जोड़ना होगा: 3 + 1 + 4 5 = 3 + 1 + 20 = 24. पाए गए मानों को मूल अभिव्यक्ति में प्रतिस्थापित करते हुए, हम उत्तर की गणना करते हैं: 4 + 24 = 28 .

उत्तर: 4 + (3 + 1 + 4 · (2 ​​+ 3)) = 28.

दूसरे शब्दों में, किसी अभिव्यक्ति के मूल्य की गणना करते समय जिसमें कोष्ठक के भीतर कोष्ठक शामिल होते हैं, हम आंतरिक कोष्ठक से शुरू करते हैं और बाहरी कोष्ठक की ओर अपना काम करते हैं।

मान लीजिए कि हमें यह पता लगाना है कि (4 + (4 + (4 − 6: 2)) − 1) − 1 कितना होगा। हम आंतरिक कोष्ठक में अभिव्यक्ति से शुरू करते हैं। चूँकि 4 - 6: 2 = 4 - 3 = 1, मूल अभिव्यक्ति को (4 + (4 + 1) - 1) - 1 के रूप में लिखा जा सकता है। आंतरिक कोष्ठकों को फिर से देखें: 4 + 1 = 5। हम अभिव्यक्ति पर आ गये हैं (4 + 5 − 1) − 1 . हम गिनते है 4 + 5 − 1 = 8 और परिणामस्वरूप हमें अंतर 8 - 1 मिलता है, जिसका परिणाम 7 होगा।

घातों, मूलों, लघुगणक और अन्य कार्यों के साथ अभिव्यक्तियों में गणना का क्रम

यदि हमारी स्थिति में घात, मूल, लघुगणक या त्रिकोणमितीय फ़ंक्शन (साइन, कोसाइन, स्पर्शरेखा और कोटैंजेंट) या अन्य फ़ंक्शन के साथ एक अभिव्यक्ति शामिल है, तो सबसे पहले हम फ़ंक्शन के मान की गणना करते हैं। इसके बाद, हम पिछले पैराग्राफ में निर्दिष्ट नियमों के अनुसार कार्य करते हैं। दूसरे शब्दों में, फ़ंक्शंस कोष्ठक में संलग्न अभिव्यक्ति के महत्व के बराबर हैं।

आइए ऐसी गणना का एक उदाहरण देखें।

उदाहरण 6

स्थिति:ज्ञात कीजिए कि (3 + 1) · 2 + 6 2: 3 − 7 कितना है।

समाधान

हमारे पास एक डिग्री के साथ एक अभिव्यक्ति है, जिसका मूल्य पहले पाया जाना चाहिए। हम गिनते हैं: 6 2 = 36। अब परिणाम को अभिव्यक्ति में प्रतिस्थापित करते हैं, जिसके बाद यह (3 + 1) · 2 + 36: 3 − 7 का रूप ले लेगा।

(3 + 1) 2 + 36: 3 - 7 = 4 2 + 36: 3 - 7 = 8 + 12 - 7 = 13

उत्तर: (3 + 1) 2 + 6 2: 3 − 7 = 13.

भावों के मानों की गणना के लिए समर्पित एक अलग लेख में, हम मूल, डिग्री आदि वाले भावों के मामले में गणना के अन्य, अधिक जटिल उदाहरण प्रदान करते हैं। हम अनुशंसा करते हैं कि आप इससे परिचित हों।

यदि आपको पाठ में कोई त्रुटि दिखाई देती है, तो कृपया उसे हाइलाइट करें और Ctrl+Enter दबाएँ

© 2023 skudelnica.ru -- प्यार, विश्वासघात, मनोविज्ञान, तलाक, भावनाएँ, झगड़े