Протоны и нейтроны в атоме. Поговорим о том, как найти протоны, нейтроны и электроны

Главная / Измена жены

Атом. Представление остроении атома. Электроны, протоны, нейтроны

Атом - элементарная частица вещества (хим. элемента), состоящая из определенного набора протонов и нейтронов (ядро атома), и электронов.

Ядро атома состоит из протонов (p+) и нейтронов (n0). Число протонов N(p+) равно заряду ядра (Z) ипорядковому номеру элемента в естественном ряду элементов (и в периодической системе элементов). Сумма числа нейтронов N(n0), обозначаемого просто буквой N, и числа протонов Z называется массовым числом и обозначается буквой А. Электронная оболочка атома состоит из движущихся вокруг ядра электронов (е-). Число электронов N(e-) в электронной оболочке нейтрального атома равно числу протонов Z в его ядре.

Представление о современной квантово-механической модели атома. Характеристика состояния электронов в атоме с помощью набора квантовых чисел, их трактовка и допустимые значения

Атом – микромир, в котором действуют законы квантовой механики.

Волновой процесс движения электрона в атоме вокруг ядра описывается с помощью волновой функции пси (ψ), которая должна иметь три параметра квантования (3 степени свободы).

Физический смысл – трехмерная амплитуда эл. волны.

n – главное квантовое число, характ. энергетич. уровень в атоме.

l – побочное (орбитальное к.ч.) l=0…n-1, характеризует энергетич. подуровни в атоме и форму атомной орбитали.

m l – магнитное к.ч. ml= -l… +l, характеризует ориентацию элемента в м.п.

ms- спиновое число. Исп. Т.к. каждый электрон имеет свой момет движения

Последовательность заполнения энергетических уровней и подуровней электронами в многоэлектронных атомах. Принцип Паули. Правило Гунда. Принцип минимума энергии.

Пр. Гунда : заполнение происходит последовательно таким образом, чтобы сумма спиновых чисел (момент движения) было максимально.

Принцип Паули : в атоме не может быть 2х эл., у которых все 4 квант. Числа были бы одинаковы

Хn – макс кол-во эл. на энерг. ур.

Начиная с 3его периода наблюдается эффект запаздывания, который объясняется принципом наименьшей энергии: формирование электронной оболочки атома происходит таким образом, что эл. занимают энергетически выгодное положение, когда энергия связи с ядром максимально возможна, а собственная энергия электрона – минимально возможна.

Пр. Кличевского – наиболее энергетически выгодны те подур., у кот. сумма квантовых чисел n и l стремится к мин.



Энергия ионизации и энергия сродства к электрону. Характер их изменения по периодам и группам периодической системы Д.И.Менделеева. Металлы и неметаллы.

Энергия ионизации атома - Энергия, необходимая для отрыва электрона от невозбужденного атома, называется первой энергией (потенциалом) ионизации.

Сродство к электрону - Энергетический эффект присоединения электрона к нейтральному атому называется сродством к электрону (Е).

Энергия ионизации возрастает в периодах от щелочных металлов к благородным газам и уменьшается в группах сверху вниз.

Для элементов главных подгрупп сродство к электрону возрастает в периодах слева направо и уменьшается в группах сверху вниз.

Периодический закон и периодическая система элементов Д.И.Менделеева. Периоды, группы и подгруппы периодической системы. Связь периодической системы со строением атомов. Электронные семейства элементов.

формулировка периодического закона такова:

«свойства химических элементов (т.е. свойства и форма образуемых ими соединений) находятся в периодической зависимости от заряда ядра атомов химических элементов».

Периодическая таблица Менделеева состоит из 8 групп и 7 периодов.

Вертикальные столбцы таблицы называют группами . Элементы, внутри каждой группы, обладают сходными химическими и физическими свойствами. Это объясняется тем, что элементы одной группы имеют сходные электронные конфигурации внешнего слоя, число электронов на котором равно номеру группы. При этом группа разделяется на главные и побочные подгруппы.

В Главные подгруппы входят элементы, у которых валентные электроны располагаются на внешних ns- и np- подуровнях. В Побочные подгруппы входят элементы, у которых валентные электроны располагаются на внешнем ns- подуровне и внутреннем (n - 1) d- подуровне (или (n - 2) f- подуровне).

Все элементы в периодической таблице, в зависимости от того, на каком подуровне (s-, p-, d- или f-) находятся валентные электроны классифицируются на: s- элементы (элементы главной подгруппы I и II групп), p- элементы (элементы главных подгрупп III - VII групп), d- элементы (элементы побочных подгрупп), f- элементы (лантаноиды, актиноиды).



Горизонтальные ряды таблицы называют периодами . Элементы в периодах отличаются между собой, но общее у них то, что последние электроны находятся на одном энергетическом уровне (главное квантовое число n - одинаково).

Метод валентных связей

В образовании ковалент хим связей участвуют только валентные атомные орбитали (электроны), а остальные локализованы возле ядра атома.

Основные положения:

В образовании ков хим св участвуют только валентные атомные орбитали

Ковалет св образуется двумя электронами с антипараллельными спинами

Связь располагается в том направлении, в кот возможность перекрывания электронных облаков минимальна

8. Два механизма образования ковалентной связи: обычный и донорно-акцепторный.

9. Гибридизация валентных атомных орбиталей: sр-, sp 2 -, sp 3 -гибридизация. Геометрическая форма и полярность молекул. Основные характеристики ковалентных связей: длина, энергия, направленность, насыщаемость, валентные углы.

Гибридизация – это энергетическое выравнивание валентных атомных орбиталей, сопровождающееся выравниванием форм эл. облаков

Гибридные атомные орбитали имеют форму направленной восьмерки в плоскости, в трехмерном пространстве – укороченная гантель, называемая q –а.о.

Полярность молекул определяется их составом и геометрической формой.

Неполярными (р = O) будут:

а) молекулы простых веществ, так как они содержат только неполярные ковалентные связи;

б) многоатомные молекулы сложных веществ, если их геометрическая форма симметрична.

Полярными (р > O) будут:

а) двухатомные молекулы сложных веществ, так как они содержат только полярные связи;

б) многоатомные молекулы сложных веществ, если их строение асимметрично, т. е. их геометрическая форма либо незавершенная, либо искаженная, что приводит к появлению суммарного электрического диполя, например у молекул NH3, Н2О, HNО3 и HCN.

Энергия ков.св.|Ех.с.(кДж/моль) –кол-во энергии, выделяемое при возникновении хим св в объеме 1 моля элементов

Длина ков св – определяется, как прямая, соединяющая ядра атомов хим элементов

Насыщаемость ков хим св – каждая валентная а.о. у атома может образовывать только одну хим связь т.е. только 1 раз перекрываться с а.о. других атомов

Направленность – обуславливает молекулярное строение веществ и геометрич. форму их молекул. Углы между 2мя связями называются валентными.

Полярность – обуславливается неравномерном распределением электронной плотности вследствие различных электроотрицательных атомов в молекуле, образованной атомами одного и того же электрона (o2, cl2…) общее эл. облако распределено симметрично относительно ядер атомов, т.к. разность электроотрицательности = 0. Такие хим связи называются полярными .

В молекулах типа HF HCl общее эл облако смещено в сторону ядра частицы с большей величиной э.о. такие связи называют неполярными

Реакции, отличающиеся по тепловому эффекту – эндо- и экзотермические. Превращения энергии при химических реакциях. Первый закон термодинамики. Функции состояния: внутренняя энергия, энтальпия, энтропия, энергия Гиббса.

Экзотермическая реакция - химическая реакция, сопровождающаяся выделением теплоты.

Эндотермическая реакция - химическая реакция, при которой происходит поглощение теплоты.

Выделение или поглощение энергии происходит в виде теплоты. Это позволяет судить о наличии в веществах определенного количества некоторой энергии (внутренней энергией реакции ).

При химических реакциях происходит освобождение части энергии, содержащейся в веществах, это носит название теплового эффекта реакции . по которому можно судить об изменении количества внутренней энергии вещества.

Во время химических реакций происходит взаимное превращение энергий – внутренней энергии веществ в тепловую, лучистую, электрическую и механическую, и наоборот.

Изменение внутренней энергии системы при переходе ее из одного состояния в другое равно сумме работы внешних сил и количества теплоты, переданного системе:

где ΔU - изменение внутренней энергии, A - работа внешних сил, Q - количество теплоты, переданной системе.

Из (ΔU = A + Q) следует закон сохранения внутренней энергии. Если систему изолировать от вне­шних воздействий, то A = 0 и Q = 0, а следовательно, и ΔU = 0.

При любых процессах, происходящих в изолированной системе, ее внутренняя энергия остается постоянной.

Если работу совершает система, а не внешние силы, то уравнение (ΔU = A + Q) записывается в виде:

где A" - работа, совершаемая системой (A" = -A).

Количество теплоты, переданное системе, идет на изменение ее внутренней энергии и на совершение системой работы над внешними телами.

Функцией состояния называется такая переменная характеристика системы, которая не зависит от предыстории системы и изменение которой при переходе системы из одного состояния в другое не зависит от того, каким образом было произведено это изменение.

Внутренняя энергия характеризует общий запас системы (все виды энергии системы)

Энтропия – есть мера неупорядоченности системы. Энтпропия вводится как функция состояния, изменение которой определяется отношением количества теплоты, полученное или отданное системой при t – T.

Энтальпией образования сложного вещества из простых веществ называется тепловой эффект реакции образования данного вещества из простых веществ в стандартных состояниях, отнесенный к 1 молю получающегося вещества

Энергия Гиббса - это величина, показывающая изменение энергии в ходе химической реакции.

Основные понятия химической кинетики. Скорость химической реакции. Факторы, влияющие на скорость реакции в гомогенных и гетерогенных процессах.

Химическая кинетика изучает скорость химической реакции и зависимость ее от различных факторов, а также механизм протекания химических реакций.

Скоростью химической реакции называют число элементарных актов реакции, происходящих в единицу времени.

Скорость химической реакции зависит от:

1) концентрации реагирующих веществ;

2) температуры;

3) присутствия катализаторов;

4) природы реагирующих веществ;

5) степени измельчения твердого вещества;

6) перемешивания, если вещества находятся в растворенном состоянии.

V ист =

Средняя скорость каждой реакции определяется изменением молярной концентрации реагирующих в-в за промежуток времени. (моль/(литр*с))

21. Влияние концентрации на скорость химической реакции. Закон действующих масс.

Закон действующих масс показывает зависимость скорости хим. реакц. от концентрации реагир. в-в.

Скорость хим. реакт. Прямо пропорциональна произв. конц. реагирующих в-в, взятых в степенях их стехиометрических коэф.

Для газовых реакций можно пользоваться парциальным давлением.
Закон справедлив только для ГОМОГЕННЫХ систем. Если система гетерогенная, то скор. Реакц. Зависит от пов-ти раздела(степени давления) твердой фазы.

При повышении температуры увеличивается запас внутренней энергии молекул. Всё большее их число становятся активными. Как следствие этого, возрастает доля эффективных соударений между молекулами за единицу времени, а значит и скорость химической реакции.

При повышении температуры концентрации исходных веществ в реакционной смеси практически не изменяются. Значит, увеличение скорости реакции в соответствии с главным кинетическим уравнением должно быть связано с возрастанием её константы скорости.

Голландский учёный Вант-Гофф опытным путём определил, что для химических реакций (имеющих нормальный тип зависимости скорости от температуры) при повышении температуры на каждые 10 градусов величина константы скорости возрастает в 2-4 раза. Причём для каждой химической реакции это число является постоянным и может принимать из указанного интервала как целочисленные (2, 3, 4) значения, так и дробные. Оно определяется экспериментально, называется температурным коэффициентом скорости химической реакции или коэффициентом Вант-Гоффа и обозначается греческой буквой γ:

γ =

где k Т – константа скорости химической реакции при температуре, равной Т; k T+10 – константа скорости химической реакции при температуре, повышенной, по сравнению с исходной, на 10 градусов.

Энергию активации химической реакции (Е а) по физическому смыслу можно определить как тот избыток энергии, по сравнению со средней энергией неактивных молекул исходных веществ в реакционной системе при данной температуре, который им нужно сообщить, чтобы столкновения между ними привели к химической реакции.

Минимальный запас энергии, которым должны обладать молекулы для вступления в ту или иную реакцию, можно рассматривать как своеобразный энергетический барьер этой реакции.

Причём, чем он выше, тем меньшее число молекул способно его преодолеть. Зная общее число молекул в системе и величину энергии активации для данной реакции, количество таких активных молекул можно рассчитать по закону Максвелла-Больцмана

где N a – число активных молекул, N o – общее число молекул.

Типы гидролиза солей

Химическое взаимодействие ионов соли с ионами воды, приводящее к образованию слабого электролита и сопровождающееся изменением рН раствора, называется гидролизом солей.

Любую соль можно представить, как продукт взаимодействия кислоты и основания. Тип гидролиза соли зависит от природы основания и кислоты, образующих соль. Возможны 3 типа гидролиза солей.

Гидролиз по аниону идет, если соль образована катионом сильного основания и анионом слабой кислоты. Например, соль СН3СООNa образована сильным основанием NaOH и слабой одноосновной кислотой СН3СООН. Гидролизу подвергается ион слабого электролита СН3СОО–.

Гидролиз по катиону идет, если соль образована катионом слабого основания и анионом сильной кислоты. Например, соль CuSO4 образована слабым двухкислотным основанием Cu(OH)2 и сильной кислотой H2SO4. Гидролиз идет по катиону Cu2+ и протекает в две стадии с образованием в качестве промежуточного продукта основной соли.

Гидролиз по катиону и аниону идет, если соль образована катионом слабого основания и анионом слабой кислоты. Например, соль CH3COONH4 образована слабым основанием NH4OH и слабой кислотой СН3СООН. Гидролиз идет по катиону NH4+ и аниону СН3СОО–.

Количественно гидролиз можно охарактеризовать при помощи константы гидролиза (К Г) и степени гидролиза (h) .

Константа гидролиза (K Г) - это отношение ионного произведения воды (K w ) к константе диссоциации слабого основания или слабой кислоты, образующих данную соль.

Частное от деления одной постоянной величины на другую есть также величина постоянная. Поэтому K Г - величина постоянная, которая характеризует способность соли подвергаться гидролизу. Значение K Г зависит от природы соли, температуры и не зависит от концентрации раствора.

1. Для солей типа NH 4 Cl:

Чем слабее кислота, тем в большей степени подвергаются гидролизу соли, образованные этой кислотой.

3. Для солей типа NH 4 CN:

Так как , следовательно, . Таким образом, по первой ступени гидролиз солей всегда протекает в большей степени.

Степень гидролиза (h) - отношение количества гидролизованной соли к общему количеству растворенной соли, обычно выражаемое в процентах.

Если, например, в воде было растворено 2 моль соли, а гидролизу подверглось 0,01 моль, то .

Степень гидролиза зависит от многих факторов:

1. В первую очередь, она зависит от химической природы составляющих данную соль ионов. Так, в растворах CH 3 COONa и NaCN с молярными концентрациями 0,1 моль/л при 25 0 С степень гидролиза солей различна:

h(CH 3 COONa) = 0,01%, a h(NaCN) = 1,5%.

Это объясняется различной силой кислот, составляющих соли:

Таким образом:

Чем слабее кислота (основание), образующие соль, тем выше степень гидролиза.

2. Степень гидролиза сильно меняется c изменением температуры раствора соли. Действительно, процесс гидролиза является эндотермическим, поэтому:

Чем выше температура, тем больше степень гидролиза.

3. Степень гидролиза зависит от концентрации раствора:

Чем меньше концентрация раствора соли, тем больше степень гидролиза.

Степень гидролиза может быть выражена через константу гидролиза:

1. Для солей типаNH 4 Cl:

3. Для солей типаNH 4 CN:

(7)

Таким образом, степень гидролиза солей, образованных слабой кислотой и слабым основанием, практически не зависит от концентрации раствора соли.

34. Электродный потенциал. Возникновение скачка потенциала на межфазной границе. Понятие об электродной системе и электродной реакции.

Электродный потенциал- относительная величина т.к. измеряется относительно эталона, за эталон принимается водородный электрод

Скачек потенциала

При протекании электрохимической реакции на поверхности электродов 1 род образуется положительный или отрицательный заряд относительно прилегающего слоя раствора, который называется скачек потенциала. Этот скачек измерить сложно, поэтому вводят понятие электродный потенциал

35. Электродные системы, их классификация. Оx- и red- определяющие частицы в электродных системах разного типа.

1 рода состоит из металлического электрода – проводника опущенного в водный раствор электролита, который имеет также катионы этого металла. (Металл опущен в раствор своей соли). Электрод проводник – RED, а его катион - OX

2 рода состоит из электрода проводника металла, покрытого малорастворимым соединением, имеющим те же анионы этого металла, и опущен в раствор электролита, содержащий одноименные анионы малорастворимого соединения. В электродах второго рода окисленной формой является малорастворимое соединение (МА), восстановленной – атом металла (М) и анион раствора (АZ-).

Неметаллические электроды

Неметаллические электроды - системы состоящие из электрода проводника не участвующего в электродной реакции, а являющиеся поставщиками электронов для электродной реакции. Если в неметаллическом электроде частицы OX и RED являются ионами, то такие электроны называются редокси . Если одна из потенциалоопределяющих частиц- газ, то такие электроды называются газовыми.

Понятие о стандартном равновесном электродном потенциале. Таблица стандартных электродных потенциалов. Электрохимический ряд напряжений металлов и его использование для оценки электрохимической активности металлов.

36. а) Стандартный водородный электрод. Кислородный электрод.

Для стандартных условий, т.е. когда активность ионов водорода и парциальное давление водорода равны 1, а температура 250 С, по всеобщему соглашению принимается, что стандартный потенциал водородного электрода равен нулю. Водородный электрод называют электродом сравнения.

Уравнение Нернста для водородного электрода: ϕ H + /H 2 =-0.059*PH

Для кислородного ϕOH - /O 2 =1.23-0.059PH

Чем больше стандартные восстановительные потенциалы, тем легче их можно восстановить, другими словами, тем более сильными окислителями они являются. И наоборот: низкий отрицательный потенциал означает, что данная форма является сильным восстановителем.

Окислительные

Пассивация

В компактном состоянии на поверхности металла образуется слой – пленки из окисной фазы, которая может предохранять от дальнейшей коррозии. Данное явление называется самопассивацией.
Условие сплошности пленки определяется правилом Пиллинга и Бедвортса

на поверхности металла образуется достаточно прочная пленка

Образуется рыхлая пленка

Потресковшаяся пленка не защищающая от коррозии

42. Химическое взаимодействие металлов с растворами щелочей.

С щелочами способны взаимодействовать только те металлы, оксиды и гидроксиды которых обладают амфотерными и кислотными свойствами. Это металлы: Be, Zn, Al, Ti, Ta, Cr, Mo, W, Mn, V, Nb
Металлы, у которых оксиды и гидроксиды обладают только основными свойствами к щелочам химически устойчивы (щелочные и щелочно-земельные металлы)

Щелочи в растворах и расплавах выполняют только роль среды, и окислителем по отношению к металлам в растворах щелочей является H 2 O , в расплавах окислитель – O 2

43. Химическое взаимодействие металлов с водой.

В зависимости от активности металла, реакция протекает при различных условиях и образуются разные продукты.

1). Взаимодействие с самыми активными металлами , стоящими в периодической системе в I А и I I А группах (щелочные и щелочно-земельные металлы) и алюминий . В ряду активности эти металлы расположены до алюминия (включительно)

Реакция протекает при обычных условиях, при этом образуется щелочь и водород.

активные металлы -Li, Na, K, Rb, Cs, Fr, Ca, Sr, Ba, Ra + Al – реагируют так

Катодные процессы

Поскольку катионы и молекулы воды принимают электроны от катода на инертном катоде в нейтральном растворе в первую очередь восстанавливаются те частицы, которые обладают наибольшей окислительной способностью (чем больше потенциал тем >OX способности.

Анодные процессы

Поскольку анионы и молекулы воды отдают электроны аноду, то в нейтральном растворе в первую очередь окисляются те частицы, которые обладают большей восстановительной способностью (с наименьшим электродным потенциалом) ϕ O 2/ H 2 O =1,23-0.059*PH

45. Процессы анодного окисления и катодного восстановления. Электролиз с инертным и растворяющимся анодом.

Катодный процесс.

Поскольку катион и молекулы воды принимают электроды от катода, на инертном катоде в нейтральном растворе в первую очередь восстанавливаются те частицы, которые облад наибольшей окислительной способностью (чем больше потенциал, тем выше их окисл способ)

ур.Нерснста – ϕh20/h2 =-0.059pH.

После воды не разряжаются (<-0.41)

Анодный процесс.

Поскольку анионы и H20 отдают электроны аноду, то в нейтральном растворе в первую очередь окисляются те частицы, которые обладают большей восст. Способностью (с наименьшим потенциалом).

Для H2O по ур Нернста ϕoh/h20=1.23-0.059pH

Сложные кислородсодержащие анионы не могут окисляться на аноде из водных растворов если ионы мет и немет в их состояниях имеют макс ст окисл

Искл – S+6O4 до S2O8

Металлы не могут принимать участие в процессе восстановления на катоде.

46. Расчеты масс веществ – продуктов электролиза по закону Фарадея. Выход по току продуктов электролиза.

m = AIT/nF

A – атомная масса эл

I – величина тока

T – время

F – пост. фарадея

N – валетность

Э – хим экв = A/n (m= ЭIT/F) в часах – ЭIT/26.8

Первый закон электролиза Фарадея : масса вещества, осаждённого на электроде при электролизе, прямо пропорциональна количеству электричества, переданного на этот электрод. Под количеством электричества имеется в виду электрический заряд, измеряемый, как правило, в кулонах.

Второй закон электролиза Фарадея : для данного количества электричества (электрического заряда) масса химического элемента, осаждённого на электроде, прямо пропорциональна эквивалентной массе элемента. Эквивалентной массой вещества является его молярная масса, делённая на целое число, зависящее от химической реакции, в которой участвует вещество.

Выход вещества B=mфакт/mтеор*100%

Mфакт – фактическая масса вещ-ва на аноде и катоде

Mтеор – рассчитанная масса по формулам

47. Химический анализ. Качественный анализ неорганических веществ. Характерные и специфические реакции. Аналитическая классификация катионов и анионов.

Химический анализ - определение химического состава и строения веществ; включает качественный и количественный анализ.

Задачей качественного анализа является выяснение качественного состава анализируемого объекта.

Задачей количественного анализа является определение точного содержания отдельных элементов или их соединений в анализируемом объекте.

Различные методы исследования, применяемые в качественном и в количественном анализах, можно разделить на три основные группы методов:

Химические, где используются химические реакции, результат которых определяют визуально;

Физические, основанные на измерении каких-либо физических характеристик вещества, являющихся функцией его химического состава;

Физико-химические, основанные на наблюдении за изменением физических свойств веществ (оптической плотности, электропроводности, теплопроводности и др.), которые происходят в результате химической реакции.

48. Методы количественного анализа – гравиметрический и титриметрический (объемный).

Титрование - это процесс, при котором к анализируемому раствору медленно, по каплям, приливают раствор реагента (р.в.) точно известной концентрации в количестве, эквивалентном содержанию определяемого компонента (о.в.).

Гравиметрический (весовой) анализ - метод количественного химического анализа, основанный на точном измерении массы определяемого вещества или его составных частей, выделяемых в чистом химическом состоянии или в виде соответствующих соединений (точно известного постоянного состава).

Титриметрическим (объемным) методом анализа называют метод количественного химического анализа, основанный на точном измерении объема реагента (р.в.), требующегося для завершения реакции с данным количеством определяемого вещества (о.в.).

Гравиметрический анализ основан на законе сохранения массы веществ при химических превращениях. Это наиболее точный из химических методов анализа. Его метрологические характеристики: предел обнаружения – 0,10 % или 10-3 моль/дм3; точность - 0,2 %.

Титриметрический метод анализа имеет предел обнаружения такой же, как и в гравиметрии - 0,10 % или 10-3 моль/дм3; а вот в точности уступает ей - 0,5 %. Являясь более точным, гравиметрический анализ имеет один существенный недостаток по сравнению с титриметрическим: он требует больших затрат времени на выполнение анализа.

49. Кислотно-основной метод титрования. Расчеты по закону эквивалентов. Методика титрования. Мерная посуда в титриметрическом методе

Кислотно-основное титрование - титриметрические методы определения концентрации кислот или оснований, основанные на реакции нейтрализации:

Н + + ОН - = Н 2 О

Титрование раствором щелочи называется алкалиметрией , а титрование раствором кислоты - ацидиметрией. При количественном определении кислот (алкалиметрия) - рабочим раствором является раствор щелочи NaOH или КОН, при количественном определении щелочи (ацидиметрия) рабочим раствором является раствор сильной кислоты (обычно НСl или H2SO4). Определяемые вещества: сильные и слабые кислоты; сильные и слабые основания; соли, подвергающиеся гидролизу.

Виды кислотно-основного титрования:

Титрование сильной кислоты сильным основанием или наоборот;

Титрование слабой кислоты сильным основанием;

Титрование слабого основания сильной кислотой.

Индикаторы кислотно-основного титрования представляют собой слабые органические кислоты и основания, у которых молекулярная и ионная формы отличаются окраской. В процессе диссоциации эти две формы находятся в равновесии. Изменение рН в кислотно-основном титровании нарушает равновесие процесса диссоциации индикатора, что вызывает накопление в растворе одной из форм индикатора, окраску которой можно визуально наблюдать.

Закон эквивалентов формулируется так: эквивалентные количества всех веществ, участвующих в реакции, одинаковы. Для необратимой химической реакции

nАА + nВВ+ …= nСС + nDD + …

в соответствии с законом эквивалентов всегда будет справедливо равенство:

пeqA = пeqB = …=пeqC = пeqD = …

Титрование производят с помощью бюретки, заполненной титрантом до нулевой отметки. Титровать, начиная от других отметок, не рекомендуется, так как шкала бюретки может быть неравномерной. Заполнение бюреток рабочим раствором производят через воронку или с помощью специальных приспособлений, если бюретка полуавтоматическая. Конечную точку титрования (точку эквивалентности) определяют индикаторами или физико-химическими методами (по электропроводности, светопропусканию, потенциалу индикаторного электрода и т. д.). По количеству пошедшего на титрование рабочего раствора рассчитывают результаты анализа.

При выполнении титриметрических определений измерение объемов стандартных или анализируемых растворов проводят с помощью точной мерной посуды:

мерные колбы;

50. Титриметрический метод анализа. Классификация методов титриметрического анализа. Индикаторы в титриметрическом методе анализа.

Титриметрический анализ – метод количественного химического анализа, который базируется на измерении точного объема раствора с точно известной концентрацией (титранта), истраченного на взаимодействие с определяемым веществом.

Классификация по способу титрования. Обычно выделяют три способа: прямое, обратное и заместительное титрование.

Прямое титрование – это титрование раствора определяемого вещества А непосредственно раствором титранта В. Его применяют в том случае, если реакция между А и В протекает быстро. Содержание компонента А при прямом титровании титрантом В рассчитывают на основе равенства п =п .

Обратное титрование заключается в добавлении к определяемому веществу А избытка точно известного количества стандартного раствора В и после завершения реакции между ними, титровании оставшегося количества вещества В раствором титранта В". Этот способ применяют в тех случаях, когда реакция между А и В протекает недостаточно быстро, либо нет подходящего индикатора для фиксирования точки эквивалентности этой реакции.

Количество молей эквивалента определяемого веще­ства А при обратном титровании всегда равно разности между количеством молей эквивалента веществ В и В’:

п =п - п

Титрование косвенное заключается в титровании титрантом В не определяемого вещества А, а эквивалентного ему количества заместителя А", получающегося в результате предварительно проведенной реакции между определяемым веществом А и каким-либо реагентом.

Титрование заместителя применяют обычно в тех случаях, когда невозможно провести прямое титрование.

Количество молей эквивалента определяемого вещества при титровании заместителя всегда равно количеству молей, эквивалента титранта:

п =п = п

Индикаторы - вещества, которые дают возможность установить конечную точку титрования (момент резкого изменения окраски титруемого раствора). Наиболее часто индикатор добавляют ко всему титруемому раствору (внутренний индикатор). При работе с внешними индикаторами периодически берут каплю титруемого раствора и смешивают с каплей раствора индикатора или помещают на индикаторную бумагу (что приводит к по

Размеры и массы атомов малы. Радиус атомов составляет 10 -10 м, а радиус ядра – 10 -15 м. Масса атома определяется делением массы одного моль атомов элемента на число атомов в 1 моль (N A = 6,02·10 23 моль -1). Масса атомов изменяется в пределах 10 -27 ~ 10 -25 кг. Обычно массу атомов выражают в атомных единицах массы (а.е.м.). За а.е.м. принята 1/12 массы атома изотопа углерода 12 С.

Основными характеристиками атома являются заряд его ядра (Z) и массовое число (А). Число электронов в атоме равно заряду его ядра. Свойства атомов определяются зарядом их ядер, числом электронов и их состоянием в атоме.

Основные свойства и строение ядра (теория состава атомных ядер)

1. Ядра атомов всех элементов (за исключением водорода) состоят из протонов и нейтронов.

2.Число протонов в ядре определяет значение его положительного заряда (Z). Z - порядковый номер химического элемента в периодической системе Менделеева.

3. Суммарное число протонов и нейтронов - значение его массы, так как масса атома в основном сосредоточена в ядре (99, 97% массы атома). Ядерные частицы - протоны и нейтроны - объединяются под общим названием нуклоны (от латинского слова nucleus, что означает “ядро”). Общее число нуклонов соответствует - массовому числу, т.е. округленной до целого числа его атомной массе А.

Ядра с одинаковыми Z , но различными А называются изотопами . Ядра, которые при одинаковом А имеют различные Z , называются изобарами . Всего известно около 300 устойчивых изотопов химических элементов и более 2000 естественных и искусственно полученных радиоактивных изотопов

4. Число нейтронов в ядре N может быть найдено по разности между массовым числом (А ) и порядковым номером (Z ):

5. Размер ядра характеризуется радиусом ядра , имеющим условный смысл ввиду размытости границы ядра.

Плотность ядерного вещества составляет по порядку величины 10 17 кг/м 3 и постоянна для всех ядер. Она значительно превосходит плотности самых плотных обычных веществ.

Протонно-нейтронная теория позволила разрешить возникшие ранее противоречия в представлениях о составе атомных ядер и о его связи с порядковым номером и атомной массой.

Энергия связи ядра определяется величиной той работы, которую нужно совершить, чтобы расщепить ядро на составляющие его нуклоны без придания им кинетической энергии. Из закона сохранения энергии следует, что при образовании ядра должна выделяться такая же энергия, какую нужно затратить при расщеплении ядра на составляющие его нуклоны. Энергия связи ядра является разностью между энергией всех свободных нуклонов, составляющих ядро, и их энергией в ядре.

При образовании ядра происходит уменьшение его массы: масса ядра меньше, чем сумма масс составляющих его нуклонов. Уменьшение массы ядра при его образовании объясняется выделением энергии связи. Если W св- величина энергии, выделяющейся при образовании ядра, то соответствующая ей масса Dm, равная

называется дефектом массы и характеризует уменьшение суммарной массы при образовании ядра из составляющих его нуклонов. Одной атомной единице массы соответствует атомная единица энергии (а.е.э.): а.е.э.=931,5016 МэВ.

Удельной энергией связи ядра w свназывается энергия связи, приходящаяся на один нуклон: w св= . Величина w свсоставляет в среднем 8 МэВ/нуклон. По мере увеличения числа нуклонов в ядре удельная энергия связи убывает.

Критерием устойчивости атомных ядер является соотношение между числом протонов и нейтронов в устойчивом ядре для данных изобаров. (А = const).

Ядерные силы

1. Ядерное взаимодействие свидетельствует о том, что в ядрах существуют особые ядерные силы , не сводящиеся ни к одному из типов сил, известных в классической физике (гравитационных и электромагнитных).

2. Ядерные силы являются короткодействующими силами. Они проявляются лишь на весьма малых расстояниях между нуклонами в ядре порядка 10-15 м. Длина (1,5ј2,2)10-15 мназывается радиусом действия ядерных сил .

3. Ядерные силы обнаруживают зарядовую независимость : притяжение между двумя нуклонами одинаково независимо от зарядового состояния нуклонов - протонного или нуклонного. Зарядовая независимость ядерных сил видна из сравнения энергий связи в зеркальных ядрах . Так называются ядра, в которых одинаково общее число нуклонов, но число протонов в одном равно числу нейтронов в другом. Например, ядра гелия тяжелого водорода трития - .

4. Ядерные силы обладают свойством насыщения, которое проявляется в том, что нуклон в ядре взаимодействует лишь с ограниченным числом ближайших к нему соседних нуклонов. Именно поэтому наблюдается линейная зависимость энергий связи ядер от их массовых чисел (А). Практически полное насыщение ядерных сил достигается у a-частицы, которая является очень устойчивым образованием.

Радиоактивность, g -излучение, a и b - распад

1. Радиоактивностью называется превращение неустойчивых изотопов одного химического элемента в изотопы другого элемента, сопровождающееся испусканием элементарных частиц, ядер или жесткого рентгеновского излучения. Естественной радиоактивностью называется радиоактивность, наблюдающаяся у существующих в природе неустойчивых изотопов. Искусственной радиоактивностью называется радиоактивность изотопов, полученных в результате ядерных реакций.

2. Обычно все типы радиоактивности сопровождаются испусканием гамма-излучения - жесткого, коротковолнового электроволнового излучения. Гамма-излучение является основной формой уменьшения энергии возбужденных продуктов радиоактивных превращений. Ядро, испытывающее радиоактивный распад, называется материнским ; возникающее дочернее ядро, как правило, оказывается возбужденным, и его переход в основное состояние сопровождается испусканием g-фотона.

3. Альфа-распадом называется испускание ядрами некоторых химических элементов a - частиц. Альфа-распад является свойством тяжелых ядер с массовыми числами А >200 и зарядами ядер Z >82. Внутри таких ядер происходит образование обособленных a-частиц, состоящих каждая из двух протонов и двух нейтронов, т.е. образуется атом элемента, смещенного в таблице периодической системы элементов Д.И. Менделеева (ПСЭ) на две клеточки влево от исходного радиоактивного элемента с массовым числом меньшим не 4 единицы (правило Содди – Фаянса):

4. Термином бета-распад обозначают три типа ядерных превращений: электронный (b-) и позитронный (b+) распады, а также электронный захват .

b- распад происходит преимущественно у сравнительно богатых нейтронами ядер. При этом нейтрон ядра распадается на протон, электрон и антинейтрино () с нулевым зарядом и массой.

При b- распаде массовое число изотопа не изменяется, так как общее число протонов и нейтронов сохраняется, а заряд увеличивается на 1. Поэтому, атом образовавшегося химического элемента смещается ПСЭ на одну клеточку вправо от исходного элемента, а его массовое число не изменяется (правило Содди – Фаянса):

b+- распад происходит преимущественно у относительно богатых протонами ядер. При этом протон ядра распадается на нейтрон, позитрон и нейтрино ().

.

При b+- распаде массовое число изотопа не изменяется, так как общее число протонов и нейтронов сохраняется, а заряд уменьшается на 1. Поэтому, атом образовавшегося химического элемента смещается ПСЭ на одну клеточку влево от исходного элемента, а его массовое число не изменяется (правило Содди – Фаянса):

5. В случае электронного захвата превращение заключается в том, что исчезает один из электронов в ближайшем к ядру слое. Протон, превращаясь в нейтрон, как бы “захватывает” электрон; отсюда произошел термин ”электронный захват”. Электронный захват в отличие от b±-захвата сопровождается характеристическим рентгеновским излучением.

6. b--распад происходит у естественно-радиоактивных, а также искусственно-радиоактивных ядер; b+-распад характерен только для явления искусственной радиоактивности.

7. g- излучение: при возбуждении ядро атома испускает электромагнитное излучение с малой длиной волны и высокой частотой, обладающее большой жесткостью и проникающей способностью, чем рентгеновское излучение. В результате энергия ядра уменьшается, а массовое число и заряд ядра остаются не низменными. Поэтому превращение химического элемента в другой не наблюдается, а ядро атома переходит в менее возбужденное состояние.

Что такое нейтрон? Каковы его структура, свойства и функции? Нейтроны - это самые большие из частиц, составляющих атомы, являющиеся строительными блоками всей материи.

Структура атома

Нейтроны находятся в ядре - плотной области атома, также заполненной протонами (положительно заряженными частицами). Эти два элемента удерживаются вместе при помощи силы, называем ядерной. Нейтроны имеют нейтральный заряд. Положительный заряд протона сопоставляется с отрицательным зарядом электрона для создания нейтрального атома. Несмотря на то что нейтроны в ядре не влияют на заряд атома, они все же обладают многими свойствами, которые влияют на атом, включая уровень радиоактивности.

Нейтроны, изотопы и радиоактивность

Частица, которая находится в ядре атома - нейтрон на 0,2% больше протона. Вместе они составляют 99,99% всей массы одного и того же элемента могут иметь различное количество нейтронов. Когда ученые ссылаются на атомную массу, они имеют в виду среднюю атомную массу. Например, углерод обычно имеет 6 нейтронов и 6 протонов с атомной массой 12, но иногда он встречается с атомной массой 13 (6 протонов и 7 нейтронов). Углерод с атомным номером 14 также существует, но встречается редко. Итак, атомная масса для углерода усредняется до 12,011.

Когда атомы имеют различное количество нейтронов, их называют изотопами. Ученые нашли способы добавления этих частиц в ядро ​​для создания больших изотопов. Теперь добавление нейтронов не влияет на заряд атома, так как они не имеют заряда. Однако они увеличивают радиоактивность атома. Это может привести к очень неустойчивым атомам, которые могут разряжать высокие уровни энергии.

Что такое ядро?

В химии ядро ​​является положительно заряженным центром атома, который состоит из протонов и нейтронов. Слово «ядро» происходит от латинского nucleus, которое является формой слова, означающего "орех" или "ядро". Этот термин был придуман в 1844 году Майклом Фарадеем для описания центра атома. Науки, участвующие в исследовании ядра, изучении его состава и характеристик, называются ядерной физикой и ядерной химией.

Протоны и нейтроны удерживаются сильной ядерной силой. Электроны притягиваются к ядру, но двигаются так быстро, что их вращение осуществляется на некотором расстоянии от центра атома. Заряд ядра со знаком плюс исходит от протонов, а что такое нейтрон? Это частица, которая не имеет электрического заряда. Почти весь вес атома содержится в ядре, так как протоны и нейтроны имеют гораздо большую массу, чем электроны. Число протонов в атомном ядре определяет его идентичность как элемента. Число нейтронов означает, какой изотоп элемента является атомом.

Размер атомного ядра

Ядро намного меньше общего диаметра атома, потому что электроны могут быть отдалены от центра. Атом водорода в 145 000 раз больше своего ядра, а атом урана в 23 000 раз больше своего центра. Ядро водорода является наименьшим, потому что оно состоит из одиночного протона.

Расположение протонов и нейтронов в ядре

Протон и нейтроны обычно изображаются как уплотненные вместе и равномерно распределенные по сферам. Однако это упрощение фактической структуры. Каждый нуклон (протон или нейтрон) может занимать определенный уровень энергии и диапазон местоположений. В то время как ядро ​​может быть сферическим, оно может быть также грушевидным, шаровидным или дисковидным.

Ядра протонов и нейтронов представляют собой барионы, состоящие из наименьших называемых кварками. Сила притяжения имеет очень короткий диапазон, поэтому протоны и нейтроны должны быть очень близки друг к другу, чтобы быть связанными. Это сильное притяжение преодолевает естественное отталкивание заряженных протонов.

Протон, нейтрон и электрон

Мощным толчком в развитии такой науки, как ядерная физика, стало открытие нейтрона (1932 год). Благодарить за это следует английского физика который был учеником Резерфорда. Что такое нейтрон? Это нестабильная частица, которая в свободном состоянии всего за 15 минут способна распадаться на протон, электрон и нейтрино, так называемую безмассовую нейтральную частицу.

Частица получила свое название из-за того, что она не имеет электрического заряда, она нейтральна. Нейтроны являются чрезвычайно плотными. В изолированном состоянии один нейтрон будет иметь массу всего 1,67·10 - 27 , а если взять чайную ложку плотно упакованную нейтронами, то получившийся кусок материи будет весить миллионы тонн.

Количество протонов в ядре элемента называется атомным номером. Это число дает каждому элементу свою уникальную идентичность. В атомах некоторых элементов, например углерода, число протонов в ядрах всегда одинаково, но количество нейтронов может различаться. Атом данного элемента с определенным количеством нейтронов в ядре называется изотопом.

Опасны ли одиночные нейтроны?

Что такое нейтрон? Это частица, которая наряду с протоном входит в Однако иногда они могут существовать сами по себе. Когда нейтроны находятся вне ядер атомов, они приобретают потенциально опасные свойства. Когда они двигаются с высокой скоростью, они производят смертельную радиацию. Так называемые нейтронные бомбы, известные своей способностью убивать людей и животных, при этом оказывают минимальное влияние на неживые физические структуры.

Нейтроны являются очень важной частью атома. Высокая плотность этих частиц в сочетании с их скоростью придает им чрезвычайную разрушительную силу и энергию. Как следствие, они могут изменить или даже разорвать на части ядра атомов, которые поражают. Хотя нейтрон имеет чистый нейтральный электрический заряд, он состоит из заряженных компонентов, которые отменяют друг друга относительно заряда.

Нейтрон в атоме - это крошечная частица. Как и протоны, они слишком малы, чтобы увидеть их даже с помощью электронного микроскопа, но они там есть, потому что это единственный способ, объясняющий поведение атомов. Нейтроны очень важны для обеспечения стабильности атома, однако за пределами его атомного центра они не могут существовать долго и распадаются в среднем всего лишь за 885 секунд (около 15 минут).

Название «атом» с греческого переводится как «неделимый». Все вокруг нас - твердые вещества, жидкости и воздух - построено из миллиардов этих частиц.

Появление версии об атоме

Впервые об атомах стало известно в V столетии до нашей эры, когда греческий философ Демокрит предположил, что материя состоит из движущихся крошечных частичек. Но тогда не было возможности проверить версию их существования. И хотя никто не мог увидеть эти частицы, идея обсуждалась, ведь только так ученые могли объяснить процессы, происходящие в реальном мире. Поэтому они верили в существование микрочастиц задолго до того времени, когда смогли доказать этот факт.

Только в XIX в. они стали анализироваться как мельчайшие составляющие химических элементов, имеющие конкретные свойства атомов — способность вступать в соединения с другими в строго назначенном количестве. Вначале XX века считалось, что атомы - минимальные частички материи, пока не было доказано, что они состоят из еще меньших единиц.

Из чего состоит химический элемент?

Атом химического элемента - микроскопический строительный кирпичик материи. Определяющим признаком этой микрочастицы стала молекулярная масса атома. Только открытие периодического закона Менделеева обосновало, что их виды представляют собой разнообразные формы единой материи. Они настолько малы, что их невозможно увидеть, применяя обычные микроскопы, только самые мощные электронные приборы. Для сравнения, волосок на руке человека в миллион раз шире.

Электронная структура атома имеет ядро, состоящее из нейтронов и протонов, а также электронов, которые совершают обороты вокруг центра на постоянных орбитах, как планеты вокруг своих звезд. Все они скреплены электромагнитной силой, одной из четырех главных во вселенной. Нейтроны - это частички с нейтральным зарядом, протоны наделены положительным, а электроны - отрицательным. Последние притягиваются к положительно заряженным протонам, поэтому им свойственно оставаться на орбите.

Структура атома

В центральной части имеется ядро, заполняющее минимальную часть всего атома. Но исследования показывают, что почти вся масса (99.9%) расположена именно в нем. Каждый атом содержит протоны, нейтроны, электроны. Число вращающихся электронов в нем равняется положительному центральному заряду. Частицы с одинаковым зарядом ядра Z, но различными атомной массой А и числом нейтронов в ядре N именуются изотопами, а с одинаковой А и разными Z и N - изобарами. Электрон — минимальная частица вещества с отрицательным электрическим зарядом е=1,6·10-19 кулона. Заряд иона определяет количество утраченных или прибавленных электронов. Процесс метаморфозы нейтрального атома в заряженный ион именуется ионизацией.

Новая версия модели атома

Физики открыли на сегодняшний день множество других элементарных частичек. Электронная структура атома имеет новую версию.

Считается, что протоны и нейтроны, какими бы маленькими они не были, состоят из наименьших частичек, которые называются - кварки. Они составляют новую модель построения атома. Как раньше ученые собирали доказательства для существования предыдущей модели, так и сегодня пытаются доказать существование кварков.

РТМ - прибор будущего

Современные ученые могут увидеть на мониторе компьютера атомные частички вещества, а также двигать их по поверхности, используя специальный инструмент, который носит название растровый туннельный микроскоп (РТМ).

Это компьютеризированный инструмент с наконечником, который очень осторожно движется возле поверхности материала. Когда наконечник движется, электроны перемещаются сквозь зазор между наконечником и поверхностью. Хотя материал выглядит совершенно гладким, на самом деле он неровный на атомном уровне. Компьютер делает карту поверхности вещества, создавая образ его частичек, и ученые, таким образом, могут увидеть свойства атома.

Радиоактивные частицы

Отрицательно заряженные ионы кружатся вокруг ядра на достаточно большом расстоянии. Структура атома такая, что целый он действительно нейтральный и не имеет электрического заряда, потому что все его частицы (протоны, нейтроны, электроны) находятся в балансе.

Радиоактивный атом - это элемент, который можно легко расщепить. Центр его состоит из множества протонов и нейтронов. Исключение являет собой только схема атома водорода, который имеет один единственный протон. Ядро окружает облако электронов, именно их притяжение заставляет вращаться вокруг центра. Протоны одинаковым зарядом отталкивают друг друга.

Это не проблема для большинства небольших частиц, у которых их несколько. Но некоторые из них нестабильны, особенно это касается крупных по размеру, таких как уран, который имеет 92 протона. Иногда его центр не выдерживает такой нагрузки. Радиоактивным они называются из-за того, что выбрасывают несколько частиц из своего ядра. После того, как нестабильное ядро избавилось от протонов, оставшиеся образовывают новое дочернее. Оно может быть стабильным в зависимости от количества протонов в новом ядре, а может делиться дальше. Этот процесс длится до тех пор, пока не останется стабильное дочернее ядро.

Свойства атомов

Физико-химические свойства атома закономерно изменяются от одного элемента к другому. Они определяются следующими основными параметрами.

Атомная масса. Так как основное место микрочастицы занимают протоны и нейтроны, то сумма их обусловливает число, которую выражают в атомных единицах массы (а.е.м.) Формула: A = Z + N.

Атомный радиус. Радиус находится в зависимости от расположения элемента в системе Менделеева, химической связи, количества атомов-соседей и квантовомеханического действия. Радиус ядра в сто тысяч раз меньше радиуса самого элемента. Структура атома может лишаться электронов и превращаться в положительный ион или добавлять электроны, и становиться отрицательным ионом.

В Менделеева любой химический элемент занимает свое установленное место. В таблице размер атома возрастает при перемещении сверху вниз и убавляется при перемещении слева направо. Следуя из этого, наименьший элемент — это гелий, а наибольший — цезий.

Валентность. Наружная электронная оболочка атома именуется валентной, а электроны в ней получили соответственное название - валентные электроны. Их количество устанавливает то, как атом соединяется с остальными с помощью химической связи. Способом создания последней микрочастицы пытаются наполнить свои наружные валентные оболочки.

Гравитация, притяжение - это сила, которая держит планеты на орбите, из-за нее выпущенные из рук предметы падают на пол. Человек больше замечает гравитацию, но электромагнитное действие во много раз мощнее. Сила, которая притягивает (или отталкивает) заряженные частицы в атоме, в 1000 000 000 000 000 000 000 000 000 000 000 раз мощнее, чем гравитация в нем. Но в центре ядра существует еще более могучая сила, способная удерживать протоны и нейтроны вместе.

Реакции в ядрах создают энергию как в ядерных реакторах, где атомы расщепляются. Чем тяжелее элемент, тем из большего количеств частиц построены его атомы. Если сложить общее количество протонов и нейтронов в элементе, узнаем его массу. Например, Уран, самый тяжелый элемент, имеющийся в природе, имеет атомную массу 235 или 238.

Деления атома на уровни

Атома - это величина пространства вокруг ядра, где в движении находится электрон. Всего существует 7 орбиталей, соответствующих числу периодов в таблице Менделеева. Чем более отдаленное расположение электрона от ядра, тем более значительным резервом энергии он владеет. Номер периода указывает на число вокруг его ядра. Например, Калий — элемент 4 периода, значит, он имеет 4 энергетические уровни атома. Номер химического элемента отвечает его заряду и числу электронов вокруг ядра.

Атом - источник энергии

Наверное, самая знаменитая научная формула открыта немецким физиком Эйнштейном. Она утверждает, что масса есть не что иное, как форма энергии. Исходя из этой теории, можно превратить материю в энергию и рассчитать по формуле, сколько ее можно получить. Первым практическим результатом такого превращения стали атомные бомбы, которые сначала были испытаны в пустыне Лос-Аламос (США), а затем взорвались над японскими городами. И хотя только седьмая часть взрывчатого вещества превратилась в энергию, разрушающая сила атомной бомбы была ужасной.

Для того чтобы ядро освободило свою энергию, оно должно разрушится. Чтобы расщепить его, необходимо подействовать нейтроном снаружи. Тогда ядро распадается на два других, более легких, обеспечивая при этом огромный выброс энергии. Распад приводит к освобождению других нейтронов, а они продолжают расщеплять другие ядра. Процесс превращается в цепную реакцию, в результате создавая огромное количество энергии.

Плюсы и минусы использования ядерной реакции в наше время

Разрушающую силу, которая освобождается при превращении материи, человечество пытается приручить на атомных станциях. Здесь ядерная реакция происходит не в виде взрыва, а как постепенная отдача тепла.

Производство атомной энергии имеет свои плюсы и минусы. По мнению ученых, чтобы поддерживать нашу цивилизацию на высоком уровне, необходимо использовать этот огромный источник энергии. Но следует учитывать и то, что даже самые современные разработки не могут гарантировать полной безопасности атомных электростанций. Кроме того, полученные в процессе производства энергии при ненадлежащем хранении могут сказываться на наших потомках на протяжении десятков тысяч лет.

После аварии на Чернобыльской АЭС все больше людей считает производство атомной энергии очень опасным для человечества. Единственной безопасной электростанцией такого рода является Солнце со своей ядерной энергией огромной мощности. Ученые разрабатывают всевозможные модели солнечных батарей, и, возможно, в недалеком будущем человечество сможет обеспечить себя безопасной атомной энергией.

§1. Знакомьтесь: электрон, протон, нейтрон

Атомы - мельчайшие частицы вещества.
Если увеличить до размеров Земного шара яблоко средней величины, то атомы станут размером всего лишь с яблоко. Несмотря на столь малые размеры, атом состоит из еще более мелких физических частиц.
Со строением атома вы должны быть уже знакомы из школьного курса физики. И все-таки напомним, что в составе атома есть ядро и электроны, которые вращаются вокруг ядра так быстро, что становятся неразличимыми - образуют "электронное облако", или электронную оболочку атома.

Электроны принято обозначать так: e . Электроны e − очень легкие, почти невесомые, но зато имеют отрицательный электрический заряд. Он равен −1. Электрический ток, которым все мы пользуемся - это поток электронов, бегущий в проводах.

Ядро атома , в котором сосредоточена почти вся его масса, состоит из частиц двух сортов - нейтронов и протонов.

Нейтроны обозначают так: n 0 , а протоны так: p + .
По массе нейтроны и протоны почти одинаковы - 1,675 · 10 −24 г и 1,673 · 10 −24 г.
Правда, считать массу таких маленьких частиц в граммах очень неудобно, поэтому ее выражают в углеродных единицах , каждая из которых равна 1,673 · 10 −24 г.
Для каждой частицы получают относительную атомную массу , равную частному от деления массы атома (в граммах) на массу углеродной единицы. Относительные атомные массы протона и нейтрона равны 1, а вот заряд у протонов положительный и равен +1, в то время как у нейтронов заряда нет.

. Загадки про атом


Атом можно собрать "в уме" из частиц, как игрушку или машинку из деталей детского конструктора. Надо только при этом соблюдать два важных условия.

  • Первое условие : каждому виду атомов соответствует свой собственный набор "деталей" - элементарных частиц . Например, в атоме водорода обязательно будет ядро с положительным зарядом +1, значит, в нем непременно должен быть один протон (и не больше).
    В атоме водорода могут быть и нейтроны. Об этом - в следующем параграфе .
    Атом кислорода (порядковый номер в Периодической системе равен 8) будет иметь ядро, заряженное восемью положительными зарядами (+8), - значит, там восемь протонов. Поскольку масса атома кислорода равна 16 относительных единиц, чтобы получить ядро кислорода, добавим еще 8 нейтронов.
  • Второе условие состоит в том, чтобы каждый атом оказался электронейтральным . Для этого в нем должно быть электронов столько, чтобы уравновесить заряд ядра. Иначе говоря, число электронов в атоме равно числу протонов в его ядре, а также порядковому номеру этого элемента в Периодической системе .

© 2024 skudelnica.ru -- Любовь, измена, психология, развод, чувства, ссоры