Агрегатное состояние простого вещества озон. Озон: влияние на человека и действия при отравлении

Главная / Развод

Что собой представляет формула озона? Попробуем вместе выявить отличительные характеристики данного химического вещества.

Аллотропная модификация кислорода

Молекулярная формула озона в химии О 3 . Его относительная молекулярная масса составляет 48. В составе соединения есть три атома О. Так как формула кислорода и озона включает в себя один и тот же химический элемент, в химии их называют аллотропными модификациями.

Физические свойства

При обычных условиях химическая формула озона - газообразное вещество, обладающее специфическим запахом, имеющим светло-голубой цвет. В природе данное химическое соединение можно ощутить во время прогулки после грозы по сосновому бору. Так как формула озона О 3 , он тяжелее кислорода в 1,5 раза. В сравнении с О 2 растворимость озона значительно выше. При нулевой температуре 49 его объемов легко растворяется в 100 объемах воды. В незначительных концентрациях вещество не обладает свойством токсичности, ядом озон является только в значительных объемах. Предельной допустимой концентрацией считают 5% количества в воздухе О 3 . В случае сильного охлаждения он легко сжижается, а при понижении показателя температуры до -192 градусов становится твердым веществом.

В природе

Молекула озона, формула которого была представлена выше, в природе образуется при грозовом разряде из кислорода. Кроме того, О 3 формируется при окислении смолы хвойных пород, он уничтожает вредные микроорганизмы, считается полезным для человека.

Получение в лаборатории

Как можно получить озон? Вещество, формула которого О 3 , образуется при пропускании через сухой кислород электрического разряда. Процесс осуществляется в специальном приборе - озонаторе. В его основе - две стеклянные трубки, которые вставлены одна в другую. Внутри располагается металлический стержень, снаружи есть спираль. После подключения к катушке высокого напряжения между внешней и внутренней трубкой возникает разряд, и кислород превращается в озон. Элемент, формула которого представлена в виде соединения с ковалентной полярной связью, подтверждает аллотропию кислорода.

Процесс превращения в озон кислорода является эндотермической реакцией, предполагающей существенные затраты энергии. В связи с обратимостью такого превращения наблюдается разложение озона, что сопровождается уменьшением энергии системы.

Химические свойства

Формула озона объясняет его окислительную способность. Он способен взаимодействовать с разными веществами, теряя при этом атом кислорода. Например, в реакции с иодидом калия в водной среде происходит выделение кислорода, образование свободного йода.

Молекулярная формула озона поясняет его способность вступать в реакцию практически со всеми металлами. Исключение составляют золото и платина. Например, после пропускания через озон металлического серебра наблюдается его почернение (образуется оксид). Под действием этого сильного окислителя наблюдается разрушение резины.

В стратосфере озон образуется благодаря действию УФ-облучения Солнца, формируя слой озона. Эта оболочка защищает поверхность планеты от негативного воздействия солнечной радиации.

Биологическое действие на организм

Повышенная окислительная способность данного газообразного вещества, образование свободных радикалов кислорода свидетельствуют о его опасности для организма человека. Какой вред способен нанести человеку озон? Он повреждает и раздражает ткани дыхательных органов.

Озон действует на холестерин, содержащийся в крови, вызывая атеросклероз. При продолжительном нахождении человека в среде, которая содержит повышенную концентрацию озона, развивается мужское бесплодие.

В нашей стране данный окислитель относят к первому (опасному) классу вредных веществ. Его среднесуточная ПДК не должна превышать 0,03 мг на кубический метр.

Токсичность озона, возможность его применения для уничтожения бактерий и плесени, активно применяют для дезинфекции. Стратосферный озон - прекрасный защитный экран земной жизни от ультрафиолетового излучения.

О пользе и вреде озона

Это вещество находится в двух слоях земной атмосферы. Тропосферный озон опасен для живых существ, негативно действует на сельскохозяйственные культуры, деревья, является компонентом городского смога. Стратосферный озон приносит человеку определенную пользу. Распад его в водном растворе зависит от рН, температуры, качества среды. В медицинской практике применяют озонированную воду различной концентрации. Озонотерапия предполагает прямой контакт данного вещества с организмом человека. Впервые подобная методика была применена в девятнадцатом веке. Американские исследователи проанализировали способность озона к окислению вредных микроорганизмов, рекомендовали медикам использовать это вещество при лечении простудных заболеваний.

В нашей стране озонотерапия начала применяться только в конце прошлого века. В терапевтических целях этот окислитель проявляет характеристики сильного биорегулятора, который способен увеличить результативность традиционных методик, а также проявить себя в качестве эффективного самостоятельного средства. После разработки технологии озонотерапии у медиков появилась возможность результативно бороться со многими заболеваниями. В неврологии, стоматологии, гинекологии, терапии, специалисты с помощью этого вещества борются с разнообразными инфекциями. Озонотерапия характеризуется простотой метода, его эффективностью, отличной переносимостью, отсутствием побочных эффектов, незначительными затратами.

Заключение

Озон является сильным окислителем, способным бороться с вредными микробами. Данное свойство широко применяют в современной медицине. В отечественной терапии озон используют в качестве противовоспалительного, иммуномодулирующего, противовирусного, бактерицидного, антистрессового, цитостатического средства. Благодаря его способности восстанавливать нарушения кислородного обмена, дает ему отличные возможности для лечебно-профилактической медицины.

Среди инновационных методик, основанных на окислительной способности данного соединения, выделим внутримышечное, внутривенное, подкожное введение данного вещества. Например, обработка пролежней, грибковых поражений кожи, ожогов, смесью кислорода и озона признана эффективной методикой.

В высоких концентрациях озон можно применять в качестве кровоостанавливающего средства. При низких концентрациях он способствует репарации, заживлению, эпителизации. Это вещество, растворенное в физиологическом растворе, является отличным средством для санации челюсти. В современной европейской медицине широкое распространение получила малая и большая аутогемотерапия. Оба метода связаны с введением в организм озона, использованием его окислительной способности.

В случае большой аутогемотерапии происходит введение озонового раствора заданной концентрацией в вену пациента. Малая аутогемотерапия характеризуется внутримышечным введением озонированной крови. Помимо медицины, этот сильный окислитель востребован в химическом производстве.

МОСКВА, 16 сен — РИА Новости. Международный день охраны озонового слоя, тонкого "щита", защищающего все живое на Земле от губительного ультрафиолетового излучения Солнца, отмечается в понедельник, 16 сентября — в этот день в 1987 году был подписан знаменитый Монреальский протокол.

В нормальных условиях озон, или O3, — бледно-голубой газ, который по мере охлаждения превращается в темно-синюю жидкость, а затем и в иссиня-черные кристаллы. Всего на озон в атмосфере планеты приходится около 0,6 части на миллион по объему: это значит, например, что в каждом кубометре атмосферы всего 0,6 кубического сантиметра озона. Для сравнения, углекислого газа в атмосфере уже около 400 частей на миллион — то есть больше двух стаканов на тот же кубометр воздуха.

На самом деле, такую небольшую концентрацию озона можно назвать благом для Земли: этот газ, который на высоте 15-30 километров образует спасительный озоновый слой, в непосредственной близости от человека куда менее "благороден". Озон по российской классификации относится к веществам наивысшего, первого класса опасности — это очень сильный окислитель, который крайне токсичен для человека.

Международный день охраны озонового слоя В 1994 году Генеральная Ассамблея ООН провозгласила 16 сентября Международным днем охраны озонового слоя. В этот день в 1987 году был подписан Монреальский протокол по веществам, разрушающим озоновый слой.

Разобраться в разных свойствах непростого озона РИА Новости помогал старший научный сотрудник лаборатории катализа и газовой электрохимии химического факультета МГУ имени Ломоносова Вадим Самойлович.

Озоновый щит

"Это достаточно хорошо изученный газ, практически все изучено — всего никогда не бывает, но основное все (известно)… У озона много всяких применений. Но и не забывайте, что, вообще говоря, жизнь возникла благодаря озоновому слою — это, наверное, главный момент", — говорит Самойлович.

В стратосфере озон образуется из кислорода в результате фотохимических реакций — такие реакции начинаются под воздействием солнечного излучения. Там концентрация озона уже выше — около 8 миллилитров на кубический метр. Разрушается газ при "встрече" с некоторыми соединениями, например, атомарным хлором и бромом — именно эти вещества входят в состав опасных хлорфторуглеродов, более известных как фреоны. До появления Монреальского протокола они использовались, в частности, в холодильной промышленности и как пропелленты в газовых баллончиках.

Протокол по защите озонового слоя выполнил задачу, считают ученые Монреальский протокол выполнил свою задачу - наблюдения показывают, что содержание озоноразрушающих веществ в атмосфере снижается, а научное сообщество с помощью соглашения сильно продвинулось в понимании процессов в атмосфере, связанных с озоновым слоем, сказал РИА Новости представитель России в Международной комиссии по озону, ведущий научный сотрудник Института физики атмосферы РАН имени Обухова Александр Груздев.

В 2012 году, когда Монреальский протокол отмечал 25-летие, эксперты Программы ООН по окружающей среде (UNEP) назвали защиту озонового слоя одной из всего четырех ключевых экологических проблем, в решении которой человечеству удалось добиться значительных успехов. Тогда же в UNEP отмечали, что содержание озона в стратосфере перестало снижаться с 1998 года, и, по прогнозам ученых, к 2050-2075 годам может вернуться к уровням, фиксировавшимся до 1980 года.

Озоновый смог

В 30 километрах от поверхности Земли озон "ведет себя" хорошо, но в тропосфере, приземном слое, он оказывается опасным загрязнителем. По данным UNEP, концентрация тропосферного озона в Северном полушарии за последние 100 лет выросла почти втрое, что к тому же делает его третьим по значимости "антропогенным" парниковым газом.

Здесь озон тоже не выбрасывается в атмосферу, а образуется под действием солнечного излучения в воздухе, который уже загрязнен "предшественниками" озона — оксидами азота, летучими углеводородами и некоторыми другими соединениями. В городах, где озон является одним из основных компонентов смога, в его появлении косвенно "виноваты" главным образом выбросы автотранспорта.

Страдают от приземного озона не только люди и климат. По оценкам специалистов UNEP, снижение концентрации тропосферного озона может помочь сохранить около 25 миллионов тонн риса, пшеницы, сои и кукурузы, которые ежегодно теряются из-за этого токсичного для растений газа.

Эксперты Приморья: озоновые дыры появляются, но кто виноват, непонятно Причины появления озоновых дыр до сих пор остаются спорной темой среди специалистов. В день охраны озонового слоя эксперты Приморья рассказали РИА Новости о том, какие существуют теории его повреждения и насколько соседний Китай, чья энергетика держится на угле, влияет на состояние этой части стратосферы.

Именно из-за того, что приземный озон уже совсем не так полезен, специалисты метеослужб и экологического мониторинга постоянно ведут наблюдение за его концентрациями в воздухе крупных городов, в том числе и Москвы.

Озон полезный

"Одно из очень интересных свойств озона — бактерицидное. Он по бактерицидности практически первый среди всех таких веществ, хлора, перекиси марганца, окиси хлора", — отмечает Вадим Самойлович.

Та же экстремальная природа озона, делающая его очень сильным окислителем, объясняет сферы применения этого газа. Озон используется для стерилизации и дезинфекции помещений, одежды, инструментов и, конечно, очистки воды — как питьевой, так и промышленной и даже сточной.

Кроме того, подчеркивает эксперт, озон во многих странах используется как заменитель хлора в установках для отбеливания целлюлозы.

"Хлор (при реакции) с органикой дает соответственно хлорорганику, которая гораздо более ядовитая, чем просто хлор. По большому счету, избежать этого (появления ядовитых отходов — ред.) можно либо резко уменьшив концентрацию хлора, либо просто устранив его. Один из вариантов — замена хлора на озон", — объяснил Самойлович.

Озонировать можно и воздух, и это тоже дает интересные результаты — так, по словам Самойловича, в Иванове специалисты ВНИИ охраны труда и их коллеги провели целую серию исследований, в ходе которых "в прядильных цехах в обычные воздуховоды вентиляции добавляли некоторое количество озона". В результате, распространенность респираторных заболеваний уменьшалась, а производительность труда, напротив, росла. Озонирование воздуха на складах пищевой продукции может повышать ее сохранность, и такие опыты в других странах тоже есть.

Озон токсичный

Австралийские авиарейсы производят больше всего токсичного озона Исследователи обнаружили в Тихом океане "пятно" размером в тысячу километров, где тропосферный озон генерируется эффективнее всего, а также выявили самые "производительные" в отношении озона авиарейсы - все они имеют местом назначения Австралию или Новую Зеландию.

Подвох с использованием озона все тот же — его токсичность. В России предельно допустимая концентрация (ПДК) по озону в атмосферном воздухе составляет 0,16 миллиграмма на кубический метр, а в воздухе рабочей зоны — 0,1 миллиграмма. Поэтому, отмечает Самойлович, то же озонирование требует постоянного мониторинга, что сильно усложняет дело.

"Это все-таки техника достаточно сложная. Вылить ведро какого-нибудь там бактерицида — это проще гораздо, вылил и все, а тут следить надо, какая-то подготовка должна быть", — говорит ученый.

Озон вредит организму человека медленно, но серьезно — при длительном нахождении в загрязненном озоном воздухе возрастает риск сердечно-сосудистых заболеваний и болезней дыхательных путей. Вступая в реакцию с холестерином, он образует нерастворимые соединения, что приводит к развитию атеросклероза.

"При концентрациях выше предельно допустимых могут возникать головная боль, раздражение слизистых, кашель, головокружение, общая усталость, упадок сердечной деятельности. Токсичный приземной озон приводит к появлению или обострению болезней органов дыхания, в группе риска находятся дети, пожилые люди, астматики", — отмечается на сайте Центральной аэрологической обсерватории (ЦАО) Росгидромета.

Озон взрывоопасный

Озон вредно не только вдыхать — спички тоже стоит спрятать подальше, потому что этот газ весьма взрывоопасен. Традиционно "порогом" опасной концентрации газообразного озона считается 300-350 миллилитров на литр воздуха, хотя некоторые ученые работают и с более высокими уровнями, говорит Самойлович. А вот жидкий озон — та самая синяя жидкость, темнеющая по мере охлаждения — взрывается самопроизвольно.

Именно это мешает использовать жидкий озон как окислитель в ракетном топливе — такие идеи появились вскоре после начала космической эры.

"Наша лаборатория в университете возникла как раз на такой идее. У каждого топлива ракетного есть своя теплотворная способность в реакции, то есть сколько тепла выделяется, когда оно сгорает, и отсюда насколько мощной будет ракета. Так вот, известно, что самый мощный вариант — жидкий водород смешивать с жидким озоном… Но есть один минус. Жидкий озон взрывается, причем взрывается спонтанно, то есть без каких-либо видимых причин", — говорит представитель МГУ.

По его словам, и советские, и американские лаборатории потратили "огромное количество сил и времени на то, чтобы сделать это каким-то безопасным (делом) — выяснилось, что сделать это невозможно". Самойлович вспоминает, что однажды коллегам из США удалось получить особо чистый озон, который "вроде бы" не взрывался, "уже все били в литавры", но затем взорвался весь завод, и работы были прекращены.

"У нас были случаи, когда, скажем, колба с жидким озоном стоит, стоит, жидкий азот подливают туда, а потом — то ли азот там выкипел, то ли что — приходишь, а там половины установки нет, все разнесло в пыль. Отчего он взорвался — кто его знает", — отмечает ученый.

Замечали ли вы когда-то, как приятно дышится после дождя? Этот освежающий воздух обеспечивает озон в атмосфере, который появляется после дождя. Что это за вещество, каковы его функции, формула, а также действительно ли оно полезно для организма человека? Давайте разберемся.

Что такое озон?

Всем, кто учился в средней школе, известно, что молекула кислорода состоит из двух атомов химического элемента кислорода. Однако этот элемент способен образовывать еще одно химическое соединение - озон. Это название носит вещество, как правило, встречающееся в виде газа (хотя может пребывать во всех трех агрегатных состояниях).

Молекула данного вещества довольно сильно похожа на кислород (О 2), однако она состоит не из двух, а из трех атомов - О 3 .

История открытия озона

Человек, впервые синтезировавший озон - это нидерландский физик Мартин Ван Марум.

Именно он в 1785 г. провел опыт, пропустив через воздух электрический разряд. Получившийся газ не только приобрел специфический запах, но и синеватый оттенок. Помимо этого новое вещество оказалось более сильным окислителем, чем обычный кислород. Так, рассмотрев его влияние на ртуть, Ван Марум обнаружил, что металл немного изменил свои физические свойства, чего с ним не происходило под влиянием кислорода.

Несмотря на свое открытие, нидерландский физик не считал, что озон - это особое вещество. Только через 50 лет после открытия Ван Марума озоном всерьез заинтересовался немецкий ученый Кристиан Фридрих Шенбейн. Именно благодаря ему это вещество получило свое имя - озон (в честь греческого слова, означающего «пахнуть»), а также было более пристально изучено и описано.

Озон: физические свойства

Это вещество имеет ряд свойств. Первым из них является способность озона, как и воды, пребывать в трех агрегатных состояниях.

Нормальное состояние, в котором пребывает озон - газ голубоватого цвета (именно он окрашивает небеса в лазурный цвет) с ощутимым металлическим ароматом. Плотность такого газа - 2,1445 г/дм³.

При снижении температуры молекулы озона образуют сине-фиолетовую жидкость с плотностью 1,59 г/см³ (при температуре -188 °C). Закипает жидкий О 3 при -111,8 °C.

Пребывая в твердом состоянии, озон темнеет, становясь практически черным с отчетливым фиолетово-синим отблеском. Его плотность - 1,73 г/см 3 (при −195,7 °С). Температура, при которой начинает плавиться твердый озон - это −197,2 °С.

Молекулярная масса О 3 - 48 дальтонов.

При температуре в 0 °C озон прекрасно растворяется в воде, причем в десять раз быстрее, чем кислород. Наличие примесей в воде способно еще больше ускорить данную реакцию.

Помимо воды озон растворяется во фреоне, что облегчает его транспортировку.

Среди других веществ, в которых легко растворить О 3 (в жидком агрегатном состоянии) - аргон, азот, фтор, метан, углекислота, тетрахлоруглерод.

Также он неплохо смешивается с жидким кислородом (при температуре от 93 К).

Химические свойства озона

Молекула О 3 является довольно неустойчивой. По этой причине в нормальном состоянии она существует 10-40 минут, после чего разлагается, образуя небольшое количество тепла и кислород О 2 . Эта реакция способно произойти и гораздо быстрее, если в качестве катализаторов выступит повышение температуры окружающей среды или понижение атмосферного давления. Также разложению озона способствует и его контакт с металлами (кроме золота, платины и иридия), окислами или веществами органического происхождения.

Взаимодействие с азотной кислотой останавливает разложение О 3 . Также этому способствует хранение вещества при температуре −78 °С.

Главным химическим свойством озона является его окисляемость. Одним из продуктов окисления всегда является кислород.

При разных условиях О 3 способен взаимодействовать практически со всеми веществами и химическими элементами, уменьшая их токсичность путем превращения их в менее опасные. Например, цианиды окисляются им до цианатов, которые намного безопаснее для биологических организмов.

Как добывают?

Чаще всего для добывания О 3 на кислород воздействуют электрическим током. Чтобы разделить получившуюся смесь кислорода и озона, используют свойство последнего лучше сжижаться, чем О 2 .

В химических лабораториях иногда О 3 добывают с помощью реакции охлажденного концентрата серной кислоты с пероксидом бария.

В медицинских учреждениях, использующих О 3 для оздоровления пациентов, это вещество получают путем облучения О2 ультрафиолетом (кстати, таким же способом образуется данное вещество в атмосфере Земли под действием солнечных лучей).

Использование О3 в медицине и промышленности

Несложное строение озона, доступность исходного материала для его добывания способствует активному использованию данного вещества в промышленности.

Будучи сильным окислителем, он способен дезинфицировать значительно лучше хлора, формальдегида или окиси этилена, при этом являясь не столь токсичным. Поэтому О 3 часто используется для стерилизации медицинских инструментов, оборудования, формы, а также многих препаратов.

В промышленности данное вещество чаще всего используют для очистки или добывания многих химических веществ.

Еще одной отраслью использования является отбеливание бумаги, тканей, минеральных масел.

В химической промышленности О 3 не только помогает стерилизовать оборудование, инструменты и тару, но и применяется для обеззараживания самих продуктов (яиц, зерна, мяса, молока) и увеличения их срока хранения. Фактически он считается одним из лучших консервантов для продуктов, поскольку нетоксичен и неканцерогенен, а также прекрасно убивает споры плесени и других грибков и бактерий.

В хлебопекарнях озон применяется для ускорения процесса брожения дрожжей.

Также с помощью О 3 искусственно старятся коньяки, производится рафинирование жирных масел.

Как влияет озон на организм человека?

Из-за такой схожести с кислородом бытует заблуждение, что озон - это полезное для организма человека вещество. Однако это не так, поскольку О 3 является одним из сильнейших окислителей, способных разрушить легкие и убить каждого, кто чрезмерно вдыхает этого газ. Не зря государственные экологические организации в каждой стране строго следят за концентрацией озона в атмосфере.

Если озон так вреден, то почему же после дождя всегда становится легче дышать?

Дело в том, что одним из свойств О 3 является его способность убивать бактерии и очищать вещества от вредных примесей. Во время дождя из-за грозы начинает образовываться озон. Газ этот влияет на токсические вещества, содержащиеся в воздухе, расщепляя их, и очищает кислород от этих примесей. Именно по этой причине воздух после дождя столь свеж и приятен, а небо обретает красивый лазурный цвет.

Эти химические свойства озона, позволяющие ему очищать воздух, в последнее время активно используют для лечения людей, страдающих от различных респираторных заболеваний, а также для очистки воздуха, воды, различных косметических процедур.

Довольно активно сегодня рекламируются бытовые озонаторы, очищающие воздух в доме с помощью данного газа. Хотя эта методика кажется весьма эффективной, пока что учеными недостаточно изучено влияние большого количества очищенного озоном воздуха на организм. По этой причине чрезмерно увлекаться озонированием не стоит.


Физические свойства озона весьма характерны: это легко взрывающийся газ голубого цвета. Литр озона весит примерно 2 грамма, а воздух - 1,3 грамма. Следовательно, озон тяжелее воздуха. Температура плавления озона - минус 192,7ºС. Такой «растаявший» озон представляет собой тёмно-синюю жидкость. Озоновый «лед» имеет темно-синюю окраску с фиолетовым оттенком и при толщине свыше 1 мм становится непрозрачным. Температура кипения озона - минус 112ºС. В газообразном состоянии озон диамагнитен, т.е. не обладает магнитными свойствами, а в жидком состоянии - слабопарамагнитен. Растворимость озона в талой воде в 15 раз больше, чем у кислорода и составляет примерно 1,1 г/л. В литре уксусной кислоты при комнатной температуре растворяется 2,5 грамма озона. Он также хорошо растворяется в эфирных маслах, скипидаре, четыреххлористом углероде. Запах озона ощущается при концентрациях свыше 15 мкг/м3 воздуха. В минимальных концентрациях воспринимается как «запах свежести», в более значительных концентрациях приобретает резкий раздражающий оттенок.

Озон образуется из кислорода по следующей формуле: 3O2 + 68 ккал → 2O3. Классические примеры образования озона: под действием молнии во время грозы; под действием солнечного света в верхних слоях атмосферы. Озон также способен образовываться при любых процессах, сопровождающихся выделением атомарного кислорода, например, при разложении перекиси водорода. Промышленный синтез озона связан с использованием электрических разрядов при низких температурах. Технологии получения озона могут отличаться друг от друга. Так, для получения озона применяемого для медицинских целей используется только чистый (без примесей) медицинский кислород. Отделение образовавшегося озона от примеси кислорода обычно не составляет труда в силу различий физических свойств (озон легче сжижается). Если не требуется соблюдения определенных качественных и количественных параметров реакции, то получение озона не представляет особых трудностей.

Молекула О3 неустойчива и довольно быстро превращается в O2 с выделением тепла. При небольших концентрациях и без посторонних примесей озон разлагается медленно, при больших — со взрывом. Спирт при соприкосновении с ним моментально воспламеняется. Нагревание и контакт озона даже с ничтожными количествами субстрата окисления (органических веществ, некоторых металлов или их окислов) резко ускоряет его разложение. Озон может сохраняться длительное время при − 78ºС в присутствии стабилизатора (небольшого количества HNO3), а также в сосудах из стекла, некоторых пластмасс или благородных металлов.

Озон - сильнейший окислитель. Причина такого явления кроется в том, что в процессе распада образуется атомарный кислород. Такой кислород гораздо агрессивнее молекулярного, потому что в молекуле кислорода дефицит электронов на внешнем уровне вследствие их коллективного использования молекулярной орбитали не так заметен.

Еще в XVIII веке было замечено, что ртуть в присутствии озона теряет блеск и прилипает к стеклу, т.е. окисляется. А при пропускании озона через водный раствор йодистого калия начинает выделяться газообразный йод. Такие же «фокусы» с чистым кислородом не получались. В дальнейшем открывались свойства озона, которые сразу же были приняты на вооружение человечества: озон оказался прекрасным антисептиком, озон быстро удалял из воды органические вещества любого происхождения (парфюмерия и косметика, биологические жидкости), стал широко использоваться в промышленности и быту, прекрасно зарекомендовал себя в качестве альтернативы стоматологической бормашине.

В XXI веке применение озона во всех областях жизни и деятельности человека растет и развивается, а потому мы становимся свидетелями его превращения из экзотики в привычный инструмент для повседневной работы. ОЗОН O3, аллотропная форма кислорода.

Получение и физические свойства озона.

Впервые ученые узнали о существовании неизвестного им газа, когда начали экспериментировать с электростатическими машинами. Случилось это в 17 веке. Но начали изучать новый газ лишь в конце следующего столетия. В 1785 голландский физик Мартин ван Марум получил озон, пропуская через кислород электрические искры. Название же озон появилось лишь в 1840; его придумал швейцарский химик Кристиан Шенбейн, произведя его от греческого ozon - пахнущий. По химическому составу этот газ не отличался от кислорода, но был значительно агрессивнее. Так, он мгновенно окислял бесцветный иодид калия с выделением бурого иода; эту реакцию Шенбейн использовал для определения озона по степени посинения бумаги, пропитанной раствором иодида калия и крахмала. Даже малоактивные при комнатной температуре ртуть и серебро в присутствии озона окисляются.

Оказалось, что молекулы озона, как и кислорода, состоят только из атомов кислорода, только не из двух, а из трех. Кислород О2 и озон О3 - единственный пример образования одним химическим элементом двух газообразных (при обычных условиях) простых веществ. В молекуле О3 атомы расположены под углом, поэтому эти молекулы полярны. Получается озон в результате «прилипания» к молекулам О2 свободных атомов кислорода, которые образуются из молекул кислорода под действием электрических разрядов, ультрафиолетовых лучей, гамма-квантов, быстрых электронов и других частиц высокой энергии. Озоном всегда пахнет около работающих электрических машин, в которых «искрят» щетки, около бактерицидных ртутно-кварцевых ламп, которые излучают ультрафиолет. Атомы кислорода выделяются и в ходе некоторых химических реакций. Озон образуется в малых количествах при электролизе подкисленной воды, при медленном окислении на воздухе влажного белого фосфора, при разложении соединений с высоким содержанием кислорода (KMnO4, K2Cr2O7 и др.), при действии на воду фтора или на пероксид бария концентрированной серной кислоты. Атомы кислорода всегда присутствуют в пламени, поэтому если направить струю сжатого воздуха поперек пламени кислородной горелки, в воздухе обнаружится характерный запах озона.

Реакция 3O2 → 2O3 сильно эндотермичная: для получения 1 моль озона надо затратить 142 кДж. Обратная реакция идет с выделением энергии и осуществляется очень легко. Соответственно озон неустойчив. В отсутствие примесей газообразный озон медленно разлагается при температуре 70° С и быстро - выше 100° С. Скорость разложения озона значительно увеличивается в присутствии катализаторов. Ими могут быть и газы (например, оксид азота, хлор), и многие твердые вещества (даже стенки сосуда). Поэтому чистый озон получить трудно, а работать с ним опасно из-за возможности взрыва.

Не удивительно, что в течение многих десятилетий после открытия озона неизвестны были даже основные его физические константы: долго никому не удавалось получить чистый озон. Как писал в своем учебнике Основы химии Д.И.Менделеев, «при всех способах приготовления газообразного озона содержание его в кислороде всегда незначительно, обыкновенно лишь несколько десятых долей процента, редко 2%, и только при очень пониженной температуре оно достигает 20%». Лишь в 1880 французские ученые Ж.Готфейль и П.Шаппюи получали озон из чистого кислорода при температуре минус 23° С. Оказалось, что в толстом слое озон имеет красивую синюю окраску. Когда охлажденный озонированный кислород медленно сжали, газ стал темно-синим, а после быстрого сброса давления температура еще более понизилась и образовались капли жидкого озона темно-фиолетового цвета. Если же газ не охлаждали или сжимали быстро, то озон мгновенно, с желтой вспышкой, переходил в кислород.

Позднее разработали удобный метод синтеза озона. Если подвергнуть электролизу концентрированный раствор хлорной, фосфорной или серной кислоты с охлаждаемым анодом из платины или из оксида свинца(IV), то выделяющийся на аноде газ будет содержать до 50% озона. Были уточнены и физические константы озона. Он сжижается намного легче кислорода - при температуре -112° С (кислород - при -183° С). При -192,7° С озон затвердевает. Твердый озон имеет сине-черный цвет.

Опыты с озоном опасны. Газообразный озон способен взрываться, если его концентрация в воздухе превысит 9%. Еще легче взрываются жидкий и твердый озон, особенно при контакте с окисляющимися веществами. Озон можно хранить при низких температурах в виде растворов во фторированных углеводородах (фреонах). Такие растворы имеют голубой цвет.

Химические свойства озона.

Для озона характерна чрезвычайно высокая реакционная способность. Озон - один из сильнейших окислителей и уступает в этом отношении только фтору и фториду кислорода OF2. Действующее начало озона как окислителя - атомарный кислород, который образуется при распаде молекулы озона. Поэтому, выступая в качестве окислителя, молекула озона, как правило, «использует» только один атом кислорода, а два других выделяются в виде свободного кислорода, например, 2KI + O3 + H2O → I2 + 2KOH + O2. Так же происходит окисление многих других соединений. Однако бывают и исключения, когда молекула озона использует для окисления все три имеющиеся у нее атома кислорода, например, 3SO2 + O3 → 3SO3; Na2S + O3 → Na2SO3.

Очень важное отличие озона от кислорода в том, что озон проявляет окислительные свойства уже при комнатной температуре. Например, PbS и Pb(OH)2 в обычных условиях не реагируют с кислородом, тогда как в присутствии озона сульфид превращается в PbSO4, а гидроксид - в PbO2. Если в сосуд с озоном налить концентрированный раствор аммиака, появится белый дым - это озон окислил аммиак с образованием нитрита аммония NH4NO2. Особенно характерна для озона способность «чернить» серебряные изделия с образованием AgO и Ag2O3.

Присоединив один электрон и превратившись в отрицательный ион О3-, молекула озона становится более стабильной. Содержащие такие анионы «озонокислые соли» или озониды были известны давно - их образуют все щелочные металлы, кроме лития, причем устойчивость озонидов растет от натрия к цезию. Известны и некоторые озониды щелочноземельных металлов, например, Са(О3)2. Если направить на поверхность твердой сухой щелочи струю газообразного озона, то образуется оранжево-красная корка, содержащая озониды, например, 4КОН + 4О3 → 4КО3 + О2 + 2Н2О. При этом твердая щелочь эффективно связывает воду, что предохраняет озонид от немедленного гидролиза. Однако при избытке воды озониды бурно разлагаются: 4КО3+ 2Н2О → 4КОН + 5О2. Разложение идет и при хранении: 2КО3 → 2КО2 + О2. Озониды хорошо растворимы в жидком аммиаке, что позволило выделить их в чистом виде и изучить их свойства.

Органические, вещества, с которыми озон соприкасается, он обычно разрушает. Так, озон, в отличие от хлора, способен расщеплять бензольное кольцо. При работе с озоном нельзя использовать резиновые трубки и шланги - они моментально «прохудятся». Реакции озона с органическими соединениями идут с выделением большого количества энергии. Например, эфир, спирт, вата, смоченная скипидаром, метан и многие другие вещества самовоспламеняются при соприкосновении с озонированным воздухом, а смешение озона с этиленом приводит к сильному взрыву.

Применение озона.

Озон не всегда «сжигает» органические вещества; в ряде случаев удается провести специфические реакции с сильно разбавленным озоном. Например, при озонировании олеиновой кислоты (она в больших количествах содержится в растительных маслах) образуется азелаиновая кислота НООС(СН2)7СООН, которую используют для получения высококачественных смазочных масел, синтетических волокон и пластификаторов для пластмасс. Аналогично получают адипиновую кислоту, которую используют при синтезе найлона. В 1855 Шенбейн открыл реакцию с озоном непредельных соединений, содержащих двойные связи С=С, но только в 1925 немецкий химик Х.Штаудингер установил механизм этой реакции. Молекула озона присоединяется к двойной связи с образованием озонида - на этот раз органического, причем на место одной из связей С=С встает атом кислорода, а на место другой - группировка -О-О-. Хотя некоторые органические озониды выделены в чистом виде (например, озонид этилена), эту реакцию обычно проводят в разбавленном растворе, так как в свободном виде озониды - очень неустойчивые взрывчатые вещества. Реакция озонирования непредельных соединений пользуется у химиков-органиков большим почетом; задачи с этой реакцией часто предлагают даже на школьных олимпиадах. Дело в том, что при разложении озонида водой образуются две молекулы альдегида или кетона, которые легко идентифицировать и далее установить строение исходного непредельного соединения. Таким образом химики еще в начале 20 века установили строение многих важных органических соединений, в том числе природных, содержащих связи С=С.

Важная область применения озона - обеззараживание питьевой воды. Обычно воду хлорируют. Однако некоторые примеси в воде под действием хлора превращаются соединения с очень непpиятым запахом. Поэтому уже давно предложено заменить хлор озоном. Озонированная вода не приобретает постороннего запаха или вкуса; при полном окислении озоном многих органических соединений образуются только углекислый газ и вода. Очищают озоном и сточные воды. Продукты окисления озоном даже таких загрязнителей как фенолы, цианиды, повеpхностно-активные вещества, сульфиты, хлоpамины, представляют собой безвредные соединения без цвета и запаха. Избыток же озона довольно быстро распадается с образованием кислорода. Однако озонирование воды обходится дороже, чем хлорирование; кроме того, озон нельзя перевозить, и он должен производиться на месте использования.

Озон в атмосфере.

Озона в атмосфере Земли немного - 4 млрд. тонн, т.е. в среднем всего 1 мг/м3. Концентрация озона растет с удалением от поверхности Земли и достигает максимума в стратосфере, на высоте 20-25 км - это и есть «озоновый слой». Если весь озон из атмосферы собрать у поверхности Земли при нормальном давлении, получится слой толщиной всего около 2-3 мм. И вот такие малые количества озона в воздухе фактически обеспечивают жизнь на Земле. Озон создает «защитный экран», не пропускающий к поверхности Земли жесткие ультрафиолетовые солнечные лучи, губительные для всего живого.

В последние десятилетия большое внимание уделяется появлению так называемых «озоновых дыр» - областях со значительно уменьшенным содержанием стратосферного озона. Через такой «прохудившийся» щит до поверхности Земли доходит более жесткое ультрафиолетовое излучение Солнца. Поэтому ученые давно следят за озоном в атмосфере. В 1930 английский геофизик С.Чепмен для объяснения постоянной концентрации озона в стратосфере предложил схему из четырех реакций (эти реакции получили название цикла Чепмена, в них М означает любой атом или молекулу, которые уносят избыточную энергию):

О + О + М → О2 + М

О + О3 → 2О2

О3 → О2 + О.

Первая и четвертая реакции этого цикла - фотохимические, они идут под действием солнечной радиации. Для распада молекулы кислорода на атомы требуется излучение с длиной волны менее 242 нм, тогда как озон распадается при поглощении света в области 240-320 нм (последняя реакция как раз и защищает нас от жесткого ультрафиолета, так как кислород в этой спектральной области не поглощает). Остальные две реакции термические, т.е. идут без действия света. Очень важно, что третья реакция, приводящая к исчезновению озона, имеет энергию активации; это означает, что скорость такой реакции может увеличиваться под действием катализаторов. Как выяснилось, основной катализатор распада озона - оксид азота NO. Он образуется в верхних слоях атмосферы из азота и кислорода под действием наиболее жесткой солнечной радиации. Попадая в озоносферу, он вступает в цикл из двух реакций O3 + NO → NO2 + O2, NO2 + O → NO + O2, в результате которой его содержание в атмосфере не меняется, а стационарная концентрация озона снижается. Существуют и другие циклы, приводящие к снижению содержания озона в стратосфере, например, с участием хлора:

Cl + O3 → ClO + O2

ClO + O → Cl + O2.

Разрушают озон также пыль и газы, которые в большом количестве попадают в атмосферу при извержении вулканов. В последнее время возникло предположение, что озон также эффективно разрушает водород, выделяющийся из земной коры. Совокупность всех реакций образования и распада озона приводит к тому, что среднее время жизни молекулы озона в стратосфере составляет около трех часов.

Предполагают, что помимо природных, существуют и искусственные факторы, влияющие на озоновый слой. Хорошо известный пример - фреоны, которые являются источниками атомов хлора. Фреоны - это углеводороды, в которых атомы водорода замещены атомами фтора и хлора. Их используют в холодильной технике и для заполнения аэрозольных баллончиков. В конечном счете, фреоны попадают в воздух и медленно поднимаются с потоками воздуха все выше и выше, достигая, наконец, озонового слоя. Разлагаясь под действием солнечной радиации, фреоны сами начинают каталитически разлагать озон. Пока не известно в точности, в какой степени именно фреоны повинны в «озоновых дырах», и, тем не менее, уже давно принимают меры по ограничению их применения.

Как показывают расчеты, через 60-70 лет концентрация озона в стратосфере может уменьшиться на 25%. И одновременно увеличится концентрации озона в приземном слое - тропосфере, что тоже плохо, так как озон и продукты его превращений в воздухе ядовиты. Основной источник озона в тропосфере - перенос с массами воздуха стратосферного озона в нижние слои. Ежегодно в приземный слой озона поступает примерно 1,6 млрд. тонн. Время жизни молекулы озона в нижней части атмосферы значительно выше - более 100 суток, поскольку в приземном слое меньше интенсивность ультрафиолетового солнечного излучения, разрушающего озон. Обычно озона в тропосфере очень мало: в чистом свежем воздухе его концентрация составляет в среднем всего 0,016 мкг/л. Концентрация озона в воздухе зависит не только от высоты, но и от местности. Так, над океанами озона всегда больше, чем над сушей, так как там озон распадается медленнее. Измерения в Сочи показали, что воздух у морского побережья содержит на 20% больше озона, чем в лесу в 2 км от берега.

Современные люди вдыхают значительно больше озона, чем их предки. Основная причина этого - увеличение количества метана и оксидов азота в воздухе. Так, содержание метана в атмосфере постоянно растет, начиная с середины 19 века, когда началось использование природного газа. В загрязненной оксидами азота атмосфере метан вступает в сложную цепочку превращений с участием кислорода и паров воды, итог которой можно выразить уравнением CH4 + 4O2 → HCHO + H2O + 2O3. В роли метана могут выступать и другие углеводороды, например, содержащиеся в выхлопных газах автомобилей при неполном сгорании бензина. В результате в воздухе крупных городов за последние десятилетия концентрация озона выросла в десятки раз.

Всегда считалось, что во время грозы концентрация озона в воздухе резко увеличивается, так как молнии способствуют превращению кислорода в озон. На самом деле увеличение незначительно, причем оно происходит не во время грозы, а за несколько часов до нее. Во время же грозы и в течение нескольких часов после нее концентрация озона снижается. Объясняется это тем, что перед грозой происходит сильное вертикальное перемешивание воздушных масс, так что дополнительное количество озона поступает из верхних слоев. Кроме того, перед грозой увеличивается напряженность электрического поля, и создаются условия для образования коронного разряда на остриях различных предметов, например, кончиков ветвей. Это также способствует образованию озона. А затем при развитии грозового облака под ним возникают мощные восходящие потоки воздуха, которые и снижают содержание озона непосредственно под облаком.

Интересен вопрос о содержании озона в воздухе хвойных лесов. Например, в Курсе неорганической химии Г. Реми можно прочитать, что «озонированный воздух хвойных лесов» - выдумка. Так ли это? Ни одно растение озон, конечно, не выделяет. Но растения, особенно хвойные, выделяют в воздух множество летучих органических соединений, в том числе ненасыщенных углеводородов класса терпенов (их много в скипидаре). Так, в жаркий день сосна выделяет в час 16 мкг терпенов на каждый грамм сухой массы хвои. Терпены выделяют не только хвойные, но и некоторые лиственные деревья, среди которых - тополь и эвкалипт. А некоторые тропические деревья способны выделить в час 45 мкг терпенов на 1 г сухой массы листьев. В результате в сутки один гектар хвойного леса может выделить до 4 кг органических веществ, лиственного - около 2 кг. Покрытая лесом площадь Земли составляет миллионы гектаров, и все они выделяют в год сотни тысяч тонн различных углеводородов, в том числе и терпенов. А углеводороды, как это было показано на примере метана, под действием солнечной радиации и в присутствии других примесей способствуют образованию озона. Как показали опыты, терпены в подходящих условиях действительно очень активно включаются в цикл атмосферных фотохимических реакций с образованием озона. Так что озон в хвойном лесу - вовсе не выдумка, а экспериментальный факт.

Озон и здоровье.

Как приятно прогуляться после грозы! Воздух чист и свеж, его бодрящие струи, кажется, без всяких усилий сами втекают в легкие. «Озоном пахнет, - часто говорят в таких случаях. - Очень полезно для здоровья». Так ли это?

Когда-то озон, безусловно, считали полезным для здоровья. Но если его концентрация превышает определенный порог, он может вызывать массу неприятных последствий. В зависимости от концентрации и времени вдыхания озон вызывает изменения в легких, раздражение слизистых глаз и носа, головную боль, головокружение, снижение кровяного давления; озон уменьшает сопротивляемость организма бактериальным инфекциям дыхательных путей. Предельно допустимая его концентрация в воздухе составляет всего 0,1 мкг/л, а это означает, что озон намного опаснее хлора! Если несколько часов провести в помещении при концентрации озона всего лишь 0,4 мкг/л, могут появиться загрудинные боли, кашель, бессонница, снижается острота зрения. Если долго дышать озоном при концентрации больше 2 мкг/л, последствия могут быть более тяжелыми - вплоть до оцепенения и упадка сердечной деятельности. При содержании озона 8-9 мкг/л через несколько часов происходит отек легких, что чревато смертельным исходом. А ведь такие ничтожные количества вещества обычно с трудом поддаются анализу обычными химическими методами. К счастью, человек чувствует присутствие озона уже при очень малых его концентрациях - примерно 1 мкг/л, при которых йодкрахмальная бумажка еще и не собирается синеть. Одним людям запах озона в малых концентрациях напоминает запах хлора, другим - сернистого газа, третьим - чеснока.

Ядовит не только сам озон. С его участием в воздухе образуется, например, пероксиацетилнитрат (ПАН) СН3-СО-ООNО2 - вещество, оказывающее сильнейшее раздражающее, в том числе слезоточивое, действие, затрудняющее дыхание, а в более высоких концентрациях вызывающее паралич сердца. ПАН - один из компонентов образующегося летом в загрязненном воздухе так называемого фотохимического смога (это слово образовано от английского smoke - дым и fog - туман). Концентрация озона в смоге может достигать 2 мкг/л, что в 20 раз больше предельно допустимой. Следует также учесть, что совместное действие озона и оксидов азота в воздухе в десятки раз сильнее, чем каждого вещества порознь. Не удивительно, что последствия возникновения такого смога в больших городах могут быть катастрофическими, особенно если воздух над городом не продувается «сквозняками» и образуется застойная зона. Так, в Лондоне в 1952 от смога в течение нескольких дней погибло более 4000 человек. А смог в Нью-Йорке в 1963 убил 350 человек. Аналогичные истории были в Токио, других крупных городах. Страдают от атмосферного озона не только люди. Американские исследователи показали, например, что в областях с повышенным содержанием озона в воздухе время службы автомобильных шин и других изделий из резины значительно уменьшается.

Как уменьшить содержание озона в приземном слое? Снизить поступление в атмосферу метана вряд ли реалистично. Остается другой путь - уменьшить выбросы оксидов азота, без которых цикл реакций, приводящих к озону, идти не может. Путь это тоже непростой, так как оксиды азота выбрасываются не только автомобилями, но и (главным образом) тепловыми электростанциями.

Источники озона - не только на улице. Он образуется в рентгеновских кабинетах, в кабинетах физиотерапии (его источник - ртутно-кварцевые лампы), при работе копировальной техники (ксероксов), лазерных принтеров (здесь причина его образования - высоковольтный разряд). Озон - неизбежный спутник производства пергидроля, аргонодуговой сварки. Для уменьшения вредного действия озона необходимо оборудование вытяжки у ультрафиолетовых ламп, хорошее проветривание помещения.

И все же вряд ли правильно считать озон, безусловно, вредным для здоровья. Все зависит от его концентрации. Как показали исследования, свежий воздух очень слабо светится в темноте; причина свечения - реакции окисления с участием озона. Свечение наблюдали и при встряхивании воды в колбе, в которую был предварительно напущен озонированный кислород. Это свечение всегда связано с присутствием в воздухе или воде небольших количеств органических примесей. При смешении свежего воздуха с выдыхаемым человеком интенсивность свечения повышалась в десятки раз! И это не удивительно: в выдыхаемом воздухе обнаружены микропримеси этилена, бензола, уксусного альдегида, формальдегида, ацетона, муравьиной кислоты. Они-то и «высвечиваются» озоном. В то же время «несвежий», т.е. полностью лишенный озона, хотя и очень чистый, воздух свечения не вызывает, а человек его ощущает как «затхлый». Такой воздух можно сравнить с дистиллированной водой: она очень чистая, практически не содержит примесей, а пить ее вредно. Так что полное отсутствие в воздухе озона, по-видимому, тоже неблагоприятно для человека, так как увеличивает содержание в нем микроорганизмов, приводит к накоплению вредных веществ и неприятных запахов, которые озон разрушает. Таким образом, становится понятной необходимость регулярного и длительного проветривания помещений, даже если в нем нет людей: ведь попавший в комнату озон долго в ней не задерживается - частично он распадается, а в значительной степени оседает (адсорбируется) на стенках и других поверхностях. Сколько должно быть озона в помещении, пока сказать трудно. Однако в минимальных концентрациях озон, вероятно, необходим и полезен.

Таким образом, озон это мина замедленного действия. Если его правильно использовать, то он будет служить человечеству, но стоит его начать использовать не по назначению, как это моментально приведет к глобальной катастрофе и Земля превратится в такую планету как Марс.

Фраза «озоновый слой», ставшая известной в 70-е гг. прошлого века, давно уже набила оскомину. При этом мало кто действительно понимает, что означает это понятие и чем опасно разрушение озонового слоя. Еще большей загадкой для многих является строение молекулы озона, а ведь она напрямую связана с проблемами озонового слоя. Давайте узнаем больше об озоне, его строении и применении этого вещества в промышленности.

Что такое озон

Озон, или, как его еще называют, активный кислород, - это газ лазурного цвета с резким металлическим запахом.

Данное вещество может существовать во всех трех агрегатных состояниях: газообразном, твердом и жидком.

При этом в природе озон встречается только в виде газа, образуя так называемый озоновый слой. Именно из-за его лазурного цвета небо кажется голубым.

Как выглядит молекула озона

Свое прозвище «активный кислород» озон получил из-за своего сходства с кислородом. Так главным действующим химическим элементом в этих веществах является оксиген (О). Однако если в молекуле кислорода содержится 2 его атома, то молекула - О 3) состоит из 3 атомов этого элемента.

Благодаря такому строению, свойства озона подобны кислородным, однако более выражены. В частности, как и О 2 , О 3 является сильнейшим окислителем.

Самое главное отличие между этими «родственными» веществами, которое помнить жизненно важно для каждого, следующее: озоном нельзя дышать, он токсичен и при вдыхании способен повредить легкие или даже убить человека. При этом О 3 прекрасно подходит для очистки воздуха от токсичных примесей. Кстати, именно из-за этого после дождя так легко дышится: озон окисляет вредные вещества, содержащиеся в воздухе, и он очищается.

Модель молекулы озона (состоящая из 3 атомов оксигена) немного напоминает изображение угла, причем его размер - 117°. Эта молекула не имеет неспаренных электронов, поэтому является диамагнитной. Помимо этого, она обладает полярностью, хотя и состоит из атомов одного элемента.

Два атома данной молекулы прочно скреплены между собой. А вот связь с третьим менее надежна. По этой причине молекула озона (фото модели можно увидеть ниже) весьма непрочна и вскоре после образования распадается. Как правило, при любой реакции распада О 3 выделяется кислород.

Из-за нестабильности озона его не получается заготавливать и хранить, а также перевозить, как другие вещества. По этой причине его производство более затратно, чем других веществ.

При этом высокая активность молекул О 3 позволяет этому веществу быть сильнейшим окислителем, более мощным, чем кислород, и более безопасным, чем хлор.

Если молекула озона разрушается и выделяется О 2 , данная реакция всегда сопровождается выделением энергии. В то же время, чтобы произошел обратный процесс (образование О 3 из О 2), необходимо затратить ее не меньше.

В газообразном состоянии молекула озона распадается при температуре 70° С. Если ее повысить до 100 градусов и более, реакция значительно ускорится. Также ускоряет период распада молекул озона наличие примесей.

Свойства О3

В каком бы из трех состояний ни пребывал озон, он сохраняет синий цвет. Чем тверже вещество, тем насыщеннее и темнее этот оттенок.

Каждая молекула озона весит 48 г/моль. Она является более тяжелой, чем воздух, что помогает разделять эти вещества между собою.

О 3 способен окислять практически все металлы и неметаллы (кроме золота, иридия и платины).

Также это вещество может участвовать в реакции горения, однако для этого нужна более высокая температура, чем для О 2 .

Озон способен растворяться в Н 2 О и фреонах. В жидком состоянии он может смешиваться с жидким кислородом, азотом, метаном, аргоном, тетрахлоруглеродом и углекислотой.

Как образуется молекула озона

Молекулы О 3 образуются с помощью прикрепления к молекулам кислорода свободных атомов оксигена. Они, в свою очередь, появляются благодаря расщеплению других молекул О 2 из-за воздействия на них электрических разрядов, ультрафиолетовых лучей, быстрых электронов и других частиц высокой энергии. По этой причине специфический запах озона можно почувствовать возле искрящих электрических приборов или ламп, излучающих ультрафиолет.

В промышленных масштабах О 3 выделяют с помощью электрических или озонаторов. В этих приборах электрический ток высокого напряжения пропускается через газовый поток, в котором находится О 2 , атомы которого и служат «строительным материалом» для озона.

Иногда в эти аппараты запускают чистый кислород или обычный воздух. От чистоты исходного продукта зависит качество получаемого озона. Так, медицинский О 3 , предназначенный для обработки ран, добывают только из химически чистого О 2 .

История открытия озона

Разобравшись с тем, как выглядит молекула озона и как она образуется, стоит познакомиться с историей этого вещества.

Впервые оно было синтезировано нидерландским исследователем Мартином Ван Марумом во второй половине XVIII в. Ученый заметил, что после пропускания электрических искр через емкость с воздухом газ в ней менял свои свойства. При этом Ван Марум так и не понял, что выделил молекулы нового вещества.

А вот его немецкий коллега по фамилии Шейнбейн, пытаясь с помощью электричества разложить Н 2 О на Н и О 2 , обратил внимание на выделение нового газа с едким запахом. Проведя массу исследований, ученый описал открытое им вещество и дал ему имя «озон» в честь греческого слова «пахнуть».

Способность убивать грибки и бактерии, а также понижать токсичность вредных соединений, которой обладало открытое вещество, заинтересовала многих ученых. Через 17 лет после официального открытия О 3 Вернером фон Сименсом был сконструирован первый аппарат, позволяющий синтезировать озон в любом количестве. А еще через 39 лет гениальный Никола Тесла изобрел и запатентовал первый в мире генератор озона.

Именно этот аппарат уже через 2 года впервые был использован во Франции на очистительных сооружениях для питьевой воды. С началом XX в. Европа начинает переходить на озонирование питьевой воды для ее очистки.

Российская империя впервые использовала эту методику в 1911 г., а через 5 лет в стране было оборудовано почти 4 десятка установок для очистки питьевой воды с помощью озона.

Сегодня озонирование воды постепенно вытесняет хлорирование. Так, 95% всей питьевой воды в Европе очищается с помощью О 3 . Также весьма популярна данная методика и в США. В СНГ она пока еще на стадии изучения, поскольку, хотя данная процедура и более безопасна и удобна, обходится она дороже, чем хлорирование.

Сферы применения озона

Помимо очистки воды, О 3 имеет ряд других сфер применения.

  • Озон используется в качестве отбеливателя при производстве бумаги и ткани.
  • Активный кислород применяется для дезинфекции вин, а также для ускорения процесса «старения» коньяков.
  • С помощью О 3 рафинируются различные растительные масла.
  • Очень часто это вещество применяют для обработки скоропортящихся продуктов, вроде мяса, яиц, фруктов и овощей. При этой процедуре не остается химических следов, как при использовании хлора или формальдегидов, а продукты могут храниться значительно дольше.
  • Озоном стерилизуют медицинское оборудование и одежду.
  • Также очищенный О 3 применяют для различных медицинских и косметических процедур. В частности, с его помощью в стоматологии дезинфицируют ротовую полость и десны, а также лечат различные заболевания (стоматит, герпес, оральный кандидоз). В европейских странах О 3 весьма популярен для дезинфекции ран.
  • В последние годы огромную популярность приобретают портативные домашние приборы для фильтрации воздуха и воды с помощью озона.

Озоновый слой - что это?

На расстоянии 15-35 км над поверхностью Земли находится озоновый слой, или, как его еще называют, озоносфера. В этом месте концентрированный О 3 служит своеобразным фильтром для вредного солнечного излучения.

Откуда берется такое количество вещества, если его молекулы нестабильны? Ответить на этот вопрос не сложно, если вспомнить модель молекулы озона и способ ее образования. Итак, кислород, состоящий из 2 молекул оксигена, попадая в стратосферу, нагревается там солнечными лучами. Этой энергии оказывается достаточно, чтобы расщепить О 2 на атомы, из которых образуется О 3 . При этом озоновый слой не только использует часть солнечной энергии, но и фильтрует ее, поглощает опасный ультрафиолет.

Выше было сказано, что озон растворяется фреонами. Эти газообразные вещества (применяются при изготовлении дезодорантов, огнетушителей и холодильников), попав в атмосферу, влияют на озон и способствуют его разложению. Вследствие этого в озоносфере возникают дыры, сквозь которые на планету попадают нефильтрированые солнечные лучи, которые разрушительно действуют на живые организмы.

Рассмотрев особенности и строение молекул озона, можно прийти к выводу, что это вещество, хотя и опасно, но весьма полезно для человечества, если его правильно использовать.

© 2024 skudelnica.ru -- Любовь, измена, психология, развод, чувства, ссоры