Логарифм числа примеры. Логарифм правила действия с логарифмами

Главная / Развод

*Магистрант под научным руководством Исахова А. А., PhD математического и компьютерного моделирования

Задумывались ли вы о том, как люди считали в далёкие времена, когда не было ни калькуляторов, ни компьютеров? Расчёты выполнялись вручную, на бумаге или в уме. Хотя задачи, с которыми они сталкивались, были такими же сложными, как и современные.

Отсутствие вычислительных машин подталкивало древних математиков к упрощению вычислений. Они придумывали таблицы с уже рассчитанными выражениями (например, таблица умножения), искали пути замены сложных операций простыми. Сегодня мы поговорим об одном подобном «упрощении» или о том, как люди научились заменять умножение сложением, а деление – вычитанием. Благодаря этому был изобретён логарифм. Чтобы понять, что это, нужно сделать всего три шага.

ШАГ 1: Упрощать и ещё раз упрощать

Начнём с простого примера.

2 + 2 = 4

Давайте усложним задачу и найдём сумму пяти двоек.

2 + 2 + 2 + 2 + 2 = 10

И с этой задачей мы легко справились. А если нужно найти сумму 1 000 000 двоек? Использование аналогичного метода расчёта займёт уйму места и времени. Но хитрые математики поняли, как это легко сделать. Они придумали операцию умножения. Давайте посмотрим как это выглядит:

2 × 2 × 2 × 2 × 2 × 2 × 2 = 128

Для упрощения этого выражения математики придумали операцию возведения в степень. Ясно, что речь идёт об умножении одного и того же числа на себя n раз, зачем его дублировать и записывать снова и снова? Не легче ли написать так?

Здесь а – основание степени, n – показатель степени. Таким образом, мы значительно укоротили запись. Независимо от величины показателя степени, выражение будет выглядеть весьма лаконично:

Михаэль Штифель (1487–1567) — немецкий математик, внёс значительный вклад в развитие алгебры и таких её областей как прогрессии, возведение в степень и отрицательные числа. Штифель впервые использовал понятия «показатель степени» и «корень». Несмотря на то, что учёный фактически использовал логарифмы, слава первооткрывателя досталась шотладскому математику Джону Неперу (1550–1617).

ШАГ 2: Понять свойства степеней

Как мы уже говорили, древние математики не обременяли себя расчётами каждый раз, когда им нужно было помножить или сложить числа, а использовали таблицы с заранее рассчитанными результатами. Очень удобно! Пользуясь подобной таблицей, немецкий математик Михаэль Штифель заметил интересную закономерность между арифметической и геометрической прогрессией.

Арифмитическая прогрессия 1 2 3 4 5 6 7 8 9 10
Геометрическая прогрессия 2 4 8 16 32 64 128 256 512 1024
Степенная запись 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10

Давайте и мы попробуем её увидеть. Ведь эта закономерность позволяет упростить операции умножения и деления . Пусть нам необходимо посчитать произведение двух чисел:

16 × 64 =  ?

Прежде чем браться за расчёты, взгляните на таблицу и найдите эти числа: это члены геометрической прогрессии с шагом 2. Числа, стоящие над ними в верхнем ряду: 4 над 16; 6 над 64 – это члены арифметической прогрессии. Сложим эти числа: 4 + 6 = 10. Теперь смотрим, какое число стоит под цифрой 10 во втором ряду – 1024. А ведь если выполнить наше изначальное задание 16х64, то результат будет равен 1024. Это значит, что, пользуясь таблицей и умея лишь складывать цифры, можно легко находить произведение.

Теперь рассмотрим операцию деления:

Снова посмотрите на таблицу и найдите соответствующие числа из верхнего ряда. Получим 10 и 7 соответственно. Если при умножении мы складываем, то при делении мы вычитаем: 10–7  =  3. Смотрим на число, стоящее под числом 3 во втором ряду, это 8. Следовательно, 1024:128 = 8.

Точно так же можно использовать таблицу для операций возведения в степень и извлечения корня.

Например, нам надо возвести 32 в квадрат. Смотрим на число, стоящее над 32 в верхнем ряду. Получаем 5. Умножаем 5 на 2. Выходит 10, далее смотрим на число, стоящее под 10: 1024. Отсюда 32 2   = 1024.

Рассмотрим извлечение корня. Например, найдём корень третьей степени от числа 512. Над числом 512 в верхнем ряду стоит 9. Разделим 9 на 3, получим 3. Находим соответствующее число во втором ряду. Получим 8. Следовательно, 83 = 512.

Все четыре примера – это следствие свойств степеней, которые можно записать следующим образом:

ШАГ 3: Назовём это логарифм

Разобравшись со степенями, попробуем решить маленькое уравнение:

2 x = 4

Данное уравнение называют показательным . Так как х , который нам необходимо найти, является показателем степени, в которую надо возвести 2, чтобы получить 4. Решение уравнения х  = 2.

Рассмотрим другой аналогичный пример:

2 x = 5

Ещё раз проговорим условие, мы ищем число х, в которое надо возвести 2, чтобы получить 5. Этот вопрос ставит нас в ступор. Решение наверняка существует, например, если нарисовать графики этих функций, то они пересекаются. Но что бы найти его, нам придётся искать его методом проб и ошибок. А это могло занять много времени.

Поэтому древние учёные придумали логарифм, они знали, что решение уравнения существует, но оно не всегда было нужно сразу. Математически это записывается так: х  =  log 2 5 . Вот мы и нашли решение уравнения 2 x   = 5. Ответ: х  =  log 2 5. Если же привести точный ответ, то х = 2,32192809489… , причём эта дробь не заканчивается никогда.

Выражение читается следующим образом: логарифм числа 5 по основанию 2 . Запомнить это легко: основание всегда пишется внизу, и в показательных и в логарифмических записях.

Свойства логарифма

Логарифмы имеют ограничения . В математике существуют два жёстких ограничения.

а) Нельзя делить на ноль

б) Извлекать корень чётной степени из отрицательного числа (так как отрицательное число, возведённое в квадрат, всегда будет положительным).

равносильно записи

a x = b

Ограничения на а

а — это основание, которое нужно возвести в степень x, чтобы получить b.

Если a  = 1. Единица в любой степени будет давать единицу.

А если а меньше нуля? Отрицательные числа — капризные. В одну степень их можно возводить, в другую — нельзя. Поэтому их тоже исключаем. В результате получаем: а > 0; a ≠ 1

Ограничения на b

Если положительное число возвести в любую степень, получим также положительное число. Отсюда: b > 0. x может быть любым числом, так как мы можем возводить в любую степень.

Если b  = 1. то при любом a значение x = 0.

Операции над логарифмами

Учитывая основные свойства степеней, выведем аналогичные и для логарифмов:

Сумма . Логарифм произведения равен сумме логарифмов сомножителей:

Разность . Логарифм частного равен разности логарифмов делимого и делителя:

Степень . Логарифм степени равен произведению показателя степени на логарифм её основания.

В соотношении

может быть поставлена задача отыскания любого из трех чисел по двум другим, заданным. Если даны а и то N находят действием возведения в степень. Если даны N и то а находят извлечением корня степени х (или возведением в степень ). Теперь рассмотрим случай, когда по заданным а и N требуется найти х.

Пусть число N положительно: число а положительно и не равно единице: .

Определение. Логарифмом числа N по основанию а называется показатель степени, в которую нужно возвести а, чтобы получить число N; логарифм обозначается через

Таким образом, в равенстве (26.1) показатель степени находят как логарифм N по основанию а. Записи

имеют одинаковый смысл. Равенство (26.1) иногда называют основным тождеством теории логарифмов; в действительности оно выражает определение понятия логарифма. По данному определению основание логарифма а всегда положительно и отлично от единицы; логарифмируемое число N положительно. Отрицательные числа и нуль логарифмов не имеют. Можно доказать, что всякое число при данном основании имеет вполне определенный логарифм. Поэтому равенство влечет за собой . Заметим, что здесь существенно условие в противном случае вывод был бы не обоснован, так как равенство верно при любых значениях х и у.

Пример 1. Найти

Решение. Для получения числа следует возвести основание 2 в степень Поэтому.

Можно проводить записи при решении таких примеров в следующей форме:

Пример 2. Найти .

Решение. Имеем

В примерах 1 и 2 мы легко находили искомый логарифм, представляя логарифмируемое число как степень основания с рациональным показателем. В общем случае, например для и т. д., этого сделать не удастся, так как логарифм имеет иррациональное значение. Обратим внимание на один связанный с этим утверждением вопрос. В п. 12 мы дали понятие о возможности определения любой действительной степени данного положительного числа. Это было необходимо для введения логарифмов, которые, вообще говоря, могут быть иррациональными числами.

Рассмотрим некоторые свойства логарифмов.

Свойство 1. Если число и основание равны, то логарифм равен единице, и, обратно, если логарифм равен единице, то число и основание равны.

Доказательство. Пусть По определению логарифма имеем а откуда

Обратно, пусть Тогда по определению

Свойство 2. Логарифм единицы по любому основанию равен нулю.

Доказательство. По определению логарифма (нулевая степень любого положительного основания равна единице, см. (10.1)). Отсюда

что и требовалось доказать.

Верно и обратное утверждение: если , то N = 1. Действительно, имеем .

Прежде чем сформулировать следующее свойство логарифмов, условимся говорить, что два числа а и b лежат по одну сторону от третьего числа с, если они оба либо больше с, либо меньше с. Если одно из этих чисел больше с, а другое меньше с, то будем говорить, что они лежат по разные стороны от с.

Свойство 3. Если число и основание лежат по одну сторону от единицы, то логарифм положителен; если число и основание лежат по разные стороны от единицы, то логарифм отрицателен.

Доказательство свойства 3 основано на том, что степень а больше единицы, если основание больше единицы и показатель положителен или основание меньше единицы и показатель отрицателен. Степень меньше единицы, если основание больше единицы и показатель отрицателен или основание меньше единицы и показатель положителен.

Требуется рассмотреть четыре случая:

Ограничимся разбором первого из них, остальные читатель рассмотрит самостоятельно.

Пусть тогда в равенстве показатель степени не может быть ни отрицательным, ни равным нулю, следовательно, он положителен, т. е. что и требовалось доказать.

Пример 3. Выяснить, какие из указанных ниже логарифмов положительны, какие отрицательны:

Решение, а) так как число 15 и основание 12 расположены по одну сторону от единицы;

б) , так как 1000 и 2 расположены по одну сторону от единицы; при этом несущественно, что основание больше логарифмируемого числа;

в) , так как 3,1 и 0,8 лежат по разные стороны от единицы;

г) ; почему?

д) ; почему?

Следующие свойства 4-6 часто называют правилами логарифмирования: они позволяют, зная логарифмы некоторых чисел, найти логарифмы их произведения, частного, степени каждого из них.

Свойство 4 (правило логарифмирования произведения). Логарифм произведения нескольких положительных чисел по данному основанию равен сумме логарифмов этих чисел по тому же основанию.

Доказательство. Пусть даны положительные числа .

Для логарифма их произведения напишем определяющее логарифм равенство (26.1):

Отсюда найдем

Сравнив показатели степени первого и последнего выражений, получим требуемое равенство:

Заметим, что условие существенно; логарифм произведения двух отрицательных чисел имеет смысл, но в этом случае получим

В общем случае, если произведение нескольких сомножителей положительно, то его логарифм равен сумме логарифмов модулей этих сомножителей.

Свойство 5 (правило логарифмирования частного). Логарифм частного положительных чисел равен разности логарифмов делимого и делителя, взятых по тому же основанию. Доказательство. Последовательно находим

что и требовалось доказать.

Свойство 6 (правило логарифмирования степени). Логарифм степени какого-либо положительного числа равен логарифму этого числа, умноженному на показатель степени.

Доказательство. Запишем снова основное тождество (26.1) для числа :

что и требовалось доказать.

Следствие. Логарифм корня из положительного числа равен логарифму подкоренного числа, деленному на показатель корня:

Доказать справедливость этого следствия можно, представив как и воспользовавшись свойством 6.

Пример 4. Прологарифмировать по основанию а:

а) (предполагается, что все величины b, с, d, е положительны);

б) (преполагается, что ).

Решение, а) Удобно перейти в данном выражении к дробным степеням:

На основании равенств (26.5)-(26.7) теперь можно записать:

Мы замечаем, что над логарифмами чисел производятся действия более простые, чем над самими числами: при умножении чисел их логарифмы складываются, при делении - вычитаются и т.д.

Именно поэтому логарифмы получили применение в вычислительной практике (см. п. 29).

Действие, обратное логарифмированию, называется потенцированием, а именно: потенцированием называется действие, с помощью которого по данному логарифму числа находится само это число. По существу потенцирование не является каким-либо особым действием: оно сводится к возведению основания в степень (равную логарифму числа). Термин «потенцирование» можно считать синонимом термина «возведенение в степень».

При потенцировании надо пользоваться правилами, обратными по отношению к правилам логарифмирования: сумму логарифмов заменить логарифмом произведения, разность логарифмов - логарифмом частного и т. д. В частности, если перед знаком логарифма находится какой-либо множитель, то его при потенцировании нужно переносить в показатель степени под знак логарифма.

Пример 5. Найти N, если известно, что

Решение. В связи с только что высказанным правилом потенцирования множители 2/3 и 1/3, стоящие перед знаками логарифмов в правой части данного равенства, перенесем в показатели степени под знаками этих логарифмов; получим

Теперь разность логарифмов заменим логарифмом частного:

для получения последней дроби в этой цепочке равенств мы предыдущую дробь освободили от иррациональности в знаменателе (п. 25).

Свойство 7. Если основание больше единицы, то большее число имеет больший логарифм (а меньшее - меньший), если основание меньше единицы, то большее число имеет меньший логарифм {а меньшее - больший).

Это свойство формулируют также и как правило логарифмирования неравенств, обе части которых положительны:

При логарифмировании неравенств по основанию, большему единицы, знак неравенства сохраняется, а при логарифмировании по основанию, меньшему единицы, знак неравенства меняется на противоположный (см. также п. 80).

Доказательство основано на свойствах 5 и 3. Рассмотрим случай, когда Если , то и, логарифмируя, получим

(а и N/М лежат по одну сторону от единицы). Отсюда

Случай а следует , читатель разберет самостоятельно.

Логарифмические выражения, решение примеров. В этой статье мы рассмотрим задачи связанные с решением логарифмов. В заданиях ставится вопрос о нахождении значения выражения. Нужно отметить, что понятие логарифма используется во многих заданиях и понимать его смысл крайне важно. Что касается ЕГЭ, то логарифм используется при решении уравнений, в прикладных задачах, также в заданиях связанных с исследованием функций.

Приведём примеры для понимания самого смысла логарифма:


Основное логарифмическое тождество:

Свойства логарифмов, которые необходимо всегда помнить:

*Логарифм произведения равен сумме логарифмов сомножителей.

* * *

*Логарифм частного (дроби) равен разности логарифмов сомножителей.

* * *

*Логарифм степени равен произведению показателя степени на логарифм ее основания.

* * *

*Переход к новому основанию

* * *

Ещё свойства:

* * *

Вычисление логарифмов тесно связано с использованием свойств показателей степени.

Перечислим некоторые из них:

Суть данного свойства заключается в том, что при переносе числителя в знаменатель и наоборот, знак показателя степени меняется на противоположный. Например:

Следствие из данного свойства:

* * *

При возведении степени в степень основание остаётся прежним, а показатели перемножаются.

* * *

Как вы убедились само понятие логарифма несложное. Главное то, что необходима хорошая практика, которая даёт определённый навык. Разумеется знание формул обязательно. Если навык в преобразовании элементарных логарифмов не сформирован, то при решении простых заданий можно легко допустить ошибку.

Практикуйтесь, решайте сначала простейшие примеры из курса математики, затем переходите к более сложным. В будущем обязательно покажу, как решаются «страшненькие» логарифмы, таких на ЕГЭ не будет, но они представляют интерес, не пропустите!

На этом всё! Успеха Вам!

С уважением, Александр Крутицких

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.

Сегодня мы поговорим о формулах логарифмов и дадим показательные примеры решения .

Сами по себе подразумевают шаблоны решения согласно основным свойствам логарифмов. Прежде применять формулы логарифмов для решения напомним для вас, сначала все свойства:

Теперь на основе этих формул(свойств), покажем примеры решения логарифмов .

Примеры решения логарифмов на основании формул.

Логарифм положительного числа b по основанию a (обозначается log a b) - это показатель степени, в которую надо возвести a, чтобы получить b, при этом b > 0, a > 0, а 1.

Согласно определения log a b = x, что равносильно a x = b, поэтому log a a x = x.

Логарифмы , примеры:

log 2 8 = 3, т.к. 2 3 = 8

log 7 49 = 2, т.к. 7 2 = 49

log 5 1/5 = -1, т.к. 5 -1 = 1/5

Десятичный логарифм - это обычный логарифм, в основании которого находится 10. Обозначается как lg.

log 10 100 = 2, т.к. 10 2 = 100

Натуральный логарифм - также обычный логарифм логарифм, но уже с основанием е (е = 2,71828... - иррациональное число). Обозначается как ln.

Формулы или свойства логарифмов желательно запомнить, потому что они понадобятся нам в дальнейшем при решении логарифмов, логарифмических уравнений и неравенств. Давайте еще раз отработаем каждую формулу на примерах.

  • Основное логарифмическое тождество
    a log a b = b

    8 2log 8 3 = (8 2log 8 3) 2 = 3 2 = 9

  • Логарифм произведения равен сумме логарифмов
    log a (bc) = log a b + log a c

    log 3 8,1 + log 3 10 = log 3 (8,1*10) = log 3 81 = 4

  • Логарифм частного равен разности логарифмов
    log a (b/c) = log a b - log a c

    9 log 5 50 /9 log 5 2 = 9 log 5 50- log 5 2 = 9 log 5 25 = 9 2 = 81

  • Свойства степени логарифмируемого числа и основания логарифма

    Показатель степени логарифмируемого числа log a b m = mlog a b

    Показатель степени основания логарифма log a n b =1/n*log a b

    log a n b m = m/n*log a b,

    если m = n, получим log a n b n = log a b

    log 4 9 = log 2 2 3 2 = log 2 3

  • Переход к новому основанию
    log a b = log c b/log c a,

    если c = b, получим log b b = 1

    тогда log a b = 1/log b a

    log 0,8 3*log 3 1,25 = log 0,8 3*log 0,8 1,25/log 0,8 3 = log 0,8 1,25 = log 4/5 5/4 = -1

Как видите, формулы логарифмов не так сложны как кажутся. Теперь рассмотрев примеры решения логарифмов мы можем переходить к логарифмическим уравнениям. Примеры решения логарифмических уравнений мы более подробно рассмотрим в статье: " ". Не пропустите!

Если у вас остались вопросы по решению, пишите их в комментариях к статье.

Заметка: решили получить образование другого класса обучение за рубежом как вариант развития событий.

(от греческого λόγος - «слово», «отношение» и ἀριθμός - «число») числа b по основанию a (log α b ) называется такое число c , и b = a c , то есть записи log α b =c и b=a c эквивалентны. Логарифм имеет смысл, если a > 0, а ≠ 1, b > 0.

Говоря другими словами логарифм числа b по основанию а формулируется как показатель степени , в которую надо возвести число a , чтобы получить число b (логарифм существует только у положительных чисел).

Из данной формулировки вытекает, что вычисление x= log α b , равнозначно решению уравнения a x =b.

Например:

log 2 8 = 3 потому, что 8=2 3 .

Выделим, что указанная формулировка логарифма дает возможность сразу определить значение логарифма , когда число под знаком логарифма выступает некоторой степенью основания. И в правду, формулировка логарифма дает возможность обосновать, что если b=a с , то логарифм числа b по основанию a равен с . Также ясно, что тема логарифмирования тесно взаимосвязана с темой степени числа .

Вычисление логарифма именуют логарифмированием . Логарифмирование - это математическая операция взятия логарифма. При логарифмировании, произведения сомножителей трансформируется в суммы членов.

Потенцирование - это математическая операция обратная логарифмированию. При потенцировании заданное основание возводится в степень выражения, над которым выполняется потенцирование. При этом суммы членов трансформируются в произведение сомножителей.

Достаточно часто используются вещественные логарифмы с основаниями 2 (двоичный), е число Эйлера e ≈ 2,718 (натуральный логарифм) и 10 (десятичный).

На данном этапе целесообразно рассмотреть образцы логарифмов log 7 2, ln5, lg0.0001.

А записи lg(-3), log -3 3.2, log -1 -4.3 не имеют смысла, так как в первой из них под знаком логарифма помещено отрицательное число , во второй - отрицательное число в основании, а в третьей - и отрицательное число под знаком логарифма и единица в основании.

Условия определения логарифма.

Стоит отдельно рассмотреть условия a > 0, a ≠ 1, b > 0.при которых дается определение логарифма . Рассмотрим, почему взяты эти ограничения. В это нам поможет равенство вида x = log α b , называемое основным логарифмическим тождеством , которое напрямую следует из данного выше определения логарифма.

Возьмем условие a≠1 . Поскольку единица в любой степени равна единице, то равенство x=log α b может существовать лишь при b=1 , но при этом log 1 1 будет любым действительным числом . Для исключения этой неоднозначности и берется a≠1 .

Докажем необходимость условия a>0 . При a=0 по формулировке логарифма может существовать только при b=0 . И соответственно тогда log 0 0 может быть любым отличным от нуля действительным числом, так как нуль в любой отличной от нуля степени есть нуль. Исключить эту неоднозначность дает условие a≠0 . А при a<0 нам бы пришлось отвергнуть разбор рациональных и иррациональных значений логарифма, поскольку степень с рациональным и иррациональным показателем определена лишь для неотрицательных оснований. Именно по этой причине и оговорено условие a>0 .

И последнее условие b>0 вытекает из неравенства a>0 , поскольку x=log α b , а значение степени с положительным основанием a всегда положительно.

Особенности логарифмов.

Логарифмы характеризуются отличительными особенностями , которые обусловили их повсеместное употребление для значительного облегчения кропотливых расчетов. При переходе «в мир логарифмов» умножение трансформируется на значительно более легкое сложение, деление — на вычитание, а возведение в степень и извлечение корня трансформируются соответствующе в умножение и деление на показатель степени.

Формулировку логарифмов и таблицу их значений (для тригонометрических функций) впервые издал в 1614 году шотландский математик Джон Непер. Логарифмические таблицы, увеличенные и детализированные прочими учеными, широко использовались при выполнении научных и инженерных вычислений, и оставались актуальными пока не стали применяться электронные калькуляторы и компьютеры.

© 2024 skudelnica.ru -- Любовь, измена, психология, развод, чувства, ссоры