Сообщение ядерный реактор. Как работает ядерный реактор

Главная / Развод

Ядерный реактор, принцип действия, работа ядерного реактора.

Каждый день мы используем электричесто и не задумываемся над тем, как оно производится и как оно к нам попало. А тем не менее это одна из самых важных частей современной цивилизации. Без электричества не было бы ничего – ни света, ни тепла, ни движения.

Все знают про то, что электричевто вырабатывается на электростанциях, в том числе и на атомных. Сердце каждой АЭС – это ядерный реактор . Именно его мы будем разбирать в этой статье.

Ядерный реактор , устройство в котором проистекает управляемая цепная ядерная реакция с выделением тепла. В основном ти устройства используются для выработки электроэнергии и в качестве привода больших кораблей. Для того, чтобы представить себе, мощность и экономичность ядерных реакторов можно привести пример. Там где среднему ядерному реактору потребуется 30 килограмм урана, средней ТЭЦ потребуется 60 вагонов угля или 40 цистерн мазута.

Прообраз ядерного реактора был построен в декабре 1942 года в США под руководством Э. Ферми. Это была так называемая “Чикагская стопка”. Chicago Pile (впоследствии слово “Pile” наряду с другими значениями стало обозначать ядерный реактор). Такое название дали ему из-за того, что он напоминал собой большую стопку графитовых блоков, положенных один на другой.

Между блоками была помещены шарообразные “рабочие тела”, из природного урана и его диоксида.

В СССР первый реактор был построен под руководством академика И. В. Курчатова. Реактор Ф-1 был заработал 25 декабря 1946 г. Реактор был в форме шара, имел в диаметре около 7,5 метров. Он не имел системы охлаждения, поэтому работал на очень малых уровнях мощности.

Исследования продолжились и в 27 июня 1954 года вступила в строй первая в мире атомная электростанция мощностью 5 МВт в г. Обнинске.

Принцип действия атомного реактора.

При распаде урана U 235 происходит выделение тепла, сопровождаемое выбросом двух-трех нейтронов. По статистическим данным – 2,5. Эти нейтроны сталкиваются с другими атомами урана U 235 . При столкновении уран U 235 превращается в нестабильный изотоп U 236 , который практически сразу же распадается на Kr 92 и Ba 141 + эти самые 2-3 нейтрона. Распад сопровождается выделением энергии в виде гамма излучения и тепла.

Это и называется цепная реакция. Атомы делятся, количество распадов увеличивается в геометрической прогрессии, что в конечном итоге приводит к молниеносному, по нашим меркам высвобождению огромного количества энергии – происходит атомный взрыв, как последствие неуправляемой цепной реакции.

Однако в ядерном реакторе мы имеем дело с управляемой ядерной реакцией. Как такая становится возможной – рассказано дальше.

Устройство ядерного реактора.

В настоящее время существует два типа ядерных реакторов ВВЭР (водо-водяной энергетический реактор) и РБМК (реактор большой мощности канальный). Отличие в том, что РБМК – кипящий реактор, а ВВЭР использует воду под давлением в 120 атмосфер.

Реактор ВВЭР 1000. 1 - привод СУЗ; 2 - крышка реактора; 3 - корпус реактора; 4 - блок защитных труб (БЗТ); 5 - шахта; 6 - выгородка активной зоны; 7 - топливные сборки (ТВС) и регулирующие стержни;

Каждый ядерный реактор промышленного типа представляет собой котел, сквозь который протекает теплоноситель. Как правило это обычная вода (ок. 75% в мире), жидкий графит (20%) и тяжелая вода (5%). В экспериментальных целях использовался берилий и предполагался углеводород.

ТВЭЛ – (тепловыделяющий элемент). Это стержни в циркониевой оболочке с ниобийным легированием, внутри которых расположены таблетки из диоксида урана.

ТВЭЛ раквтора РБМК. Устройство твэла реактора РБМК: 1 - заглушка; 2 - таблетки диоксида урана; 3 - оболочка из циркония; 4 - пружина; 5 - втулка; 6 - наконечник.

Также ТВЭЛ включает в себя пружинную систему удержания топливных таблеток на одном уровне, что позволяет точнее регулировать глубину погружения/выведения топлива в активную зону. Они собраны в кассеты шестигранной формы, каждая из которых включает в себя несколько десятков ТВЭЛов. По каналам в каждой кассете протекает теплоноситель.

ТВЭЛы в кассете выделены зеленым.

Топливная кассета в сборе.

Активная зона реактора состоит из сотен кассет, поставленных вертикально и объединенных вместе металлической оболочкой – корпусом, играющим также роль отражателем нейтронов. Среди кассет, с регулярной частотой вставлены управляющие стержни и стержни аварийной защиты реактора, которые в случае перегрева призваны заглушить реактор.

Приведем в пример данные по реактору ВВЭР-440:

Управляющие могут перемещаться вверх и вниз погружаясь или наоборот, выходя из активной зоны, где реакция идет интенсивнее всего. Это обеспечивают мощные электромоторы, в совокупности с системой управления.Стержни аварийной защиты призваны заглушить реактор в случает нештатной ситуации, упав в активную зону и поглотив больше количество свободных нейтронов.

Каждый реактор имеет крышку, через которую производится погрузка и выгрузка отработавших и новых кассет.

Поверх корпуса реактора обычно устанавливается теплоизоляция. Следующим барьером идет биологическая защита. Это как правило железобетонный бункер, вход в который закрывается шлюзовой камерой с герметичными дверьми. Биологическая защита призвана не выпустить в атмосферу радиоактивный пар и куски реактора, если все таки произойдет взрыв.

Ядерный взрыв в современных реактора крайне мало возможен. Потому что топливо достаточно мало обогащено, и разделено на ТВЕЛы. Даже если расплавится активная зона, топливо не сможет настолько активно прореагировать. Масимум что может произойти – тепловой взрыв как на Чернобыле, когда давление в реакторе достигло таких величин, что металлический корпус просто разорвало, а крышка реактора, весом в 5000 тонн сделала прыжок с переворотом, пробив крышу реакторного отсека и выпустив пар наружу. Если бы чернобыльская АЭС была оснащена правильной биологической защитой, наподобие сегодняшнего саркофага, то катастрофа обошлась человечеству намного дешевле.

Работа атомной электростанции.

Если в двух словах, то рабобоа выглядит так.

Атомная электростанция. (Кликабельно)

После поступления в активную зону реактора с помощью насосов, вода нагревается с 250 до 300 градусов и выходит с “другой стороны” реактора. Это называется первым контуром. После чего направляется в теплобменник, где встречается со вторым контуром. После чего пар под давлением поступает на лопатки турбин. Турбины вырабатывают электричество.

В средине двадцатого века внимание человечества было сосредоточено вокруг атома и объяснения учеными ядерной реакции, которую первоначально решили использовать в военных целях, изобретая согласно Манхэттенскому проекту первые ядерные бомбы. Но в 50-х годах XX века ядерный реактор в СССР применили в мирных целях. Общеизвестно, что 27 июня 1954 года на службу человечества поступила первая в мире атомная электростанция мощностью 5000 кВт. Сегодня ядерный реактор позволяет вырабатывать электроэнергию в 4000 МВт и более, то есть в 800 раз больше, чем было полвека назад.

Что такое ядерный реактор: основное определение и главные комплектующие элементы агрегата

Ядерный реактор – это специальный агрегат, при помощи которого вырабатывается энергия как следствие правильного поддержания контролируемой ядерной реакции. Использовать слово «атомный» в сочетании со словом «реактор» - допускается. Многие вообще считают понятия «ядерный» и «атомный» - синонимами, так как не находят между ними принципиальной разницы. Но представители науки склоняются к более верному сочетанию – «ядерный реактор».

Интересный факт! Ядерные реакции могут протекать с выделением или поглощением энергии.

Основными комплектующими в устройстве ядерного реактора считаются следующие элементы:

  • Замедлитель;
  • Регулирующие стержни;
  • Стержни, содержание обогащенную смесь изотопов урана;
  • Специальные защитные элементы от радиации;
  • Теплоноситель;
  • Парогенератор;
  • Турбина;
  • Генератор;
  • Конденсатор;
  • Ядерное горючее.

Какие основополагающие принципы работы ядерного реактора определяются учеными-физиками и почему они незыблемы

Основополагающий принцип работы ядерного реактора базируется на особенностях проявления ядерной реакции. В момент стандартного физического цепного ядерного процесса протекает взаимодействие частицы с атомным ядром, как следствие, ядро превращается в новое с выделением вторичных частиц, которые ученые называют гамма-квантами. Во время ядерной цепной реакции высвобождается огромное количество тепловой энергии. Пространство, в котором протекает цепная реакция, называется активной зоной реактора.

Интересный факт! Активная зона внешне напоминает собой котел, через который протекает обычная вода, выполняющая роль теплоносителя.

Для упреждения потери нейтронов зону актива реактора окружают специальным отражателем нейтронов. Его первостепенная задача – отбрасывать большую часть вылетающих нейтронов внутрь активной зоны. В качестве отражателя используют обычно то же вещество, которое служит замедлителем.

Главное управление ядерным реактором происходит с помощью специальных регулирующих стержней. Известно, что эти стержни вводятся в активную зону реактора и создают все условия для функционирования агрегата. Обычно управляющие стержни изготавливаются из химических соединений бора и кадмия. Почему используются именно эти элементы? Да все потому, что бор или кадмий способны эффективно поглощать тепловые нейтроны. И как только планируется запуск, по принципу действия ядерного реактора, управляющие стержни вводятся в активную зону. Их первостепенная задача – поглощать значительную часть нейтронов, тем самым провоцируя развитие цепной реакции. Результат должен дойти до желаемого уровня. При увеличении мощности свыше установленного уровня включаются автоматы, обязательно погружающие управляющие стержни вглубь активной зоны реактора.

Таким образом, становится понятно, что управляющие или регулирующие стержни играют важную роль в работе теплового ядерного реактора.

А для уменьшения утечки нейтронов активную зону реактора окружают отражателем нейтронов, отбрасывающих значительную массу вылетающих свободно нейтронов внутрь активной зоны. В значении отражателя используют обычно то же самое вещество, что и для замедлителя.

Ядро атомов вещества-замедлителя по стандарту обладает сравнительно небольшой массой, чтобы при столкновении с легким ядром имеющийся с цепи нейтрон терял энергию большую, чем при столкновении с тяжелым. Наиболее распространенные замедлители – обычная вода или графит.

Интересный факт! Нейтроны в процессе ядерной реакции характеризуются чрезвычайно высокой скоростью движения, поэтому и требуется замедлитель, подталкивающий нейтроны терять часть своей энергии.

Ни один реактор в мире не может функционировать нормально без помощи теплоносителя, так как его назначение – выводить энергию, которая вырабатывается в сердце реактора. В качестве теплоносителя используется обязательно жидкость или газы, так как они не способны поглощать нейтроны. Приведем пример теплоносителя для компактного ядерного реактора – вода, углекислый газ, а иногда даже жидкий металлический натрий.

Таким образом, принципы работы ядерного реактора всецело базируются на законах цепной реакции, ее протекании. Все комплектующие реактора - замедлитель, стержни, теплоноситель, ядерное горючее – выполняют поставленные задачи, обуславливая нормальную работоспособность реактора.

Какое топливо используют для ядерных реакторов и почему именно эти химические элементы избираются

Основным топливом в реакторах могут служить изотопы урана, также плутония или тория.

Еще в 1934 году Ф.Жолио-Кюри, пронаблюдав за процессом деления ядра урана, заметил, что в результате химической реакции ядро урана делится на осколки-ядра и два-три свободных нейтрона. А это значит, что появляется вероятность, что свободные нейтрону примкнут к другим ядрам урана и спровоцируют очередное деление. А так, как предсказывает цепная реакция: из трех ядер урана освободится уже шесть-девять нейтронов, и они снова примкнут к вновь образовавшимся ядрам. И так до бесконечности.

Важно помнить! Нейтроны, появляющиеся при делении ядер, способны провоцировать деление ядер изотопа урана с массовым числом 235, а для уничтожения ядер изотопа урана с массовым числом 238 может оказаться мало возникающей в процессе распада энергии.

Уран с числом 235 редко встречается в природе. На его долю приходится только 0,7%, а вот природный уран-238 занимает более просторную нишу и составляет 99,3 %.

Невзирая на такую малую долю урана-235 в природе, все равно физики и химики от него не могут отказаться, потому что он наиболее эффективен для функционирования ядерного реактора, удешевляя процесс получения энергии для человечества.

Когда появились первые ядерные реакторы и где их принято применять сегодня

Еще в 1919 году физики уже триумфовали, когда Резерфордом была обнаружен и описан процесс образования движущихся протонов как результат столкновения альфа-частиц с ядрами атомов азота. Это открытие означало, что ядро изотопа азота в результате столкновения с альфа-частицей превращалось в ядро изотопа кислорода.

Прежде чем появились первые ядерные реакторы, мир узнал несколько новых законов физики, трактующих все важные аспекты ядерной реакции. Так, в 1934 году Ф.Жолио-Кюри, Х.Халбан, Л. Коварски впервые предложили обществу и кругу мировых ученых теоретическое предположение и доказательную базу о возможности осуществления ядерных реакций. Все эксперименты были связаны с наблюдением за делением ядра урана.

В 1939 году Э.Ферми, И.Жолио-Кюри, О. Ган, О. Фриш отследили реакцию деления ядер урана при бомбардировке их нейтронами. В ходе исследований ученые установили, что при попадании в ядро урана одного ускоренного нейтрона имеющееся ядро делится на две-три части.

Цепная реакция была практически доказана в средине XX века. Ученым удалось в 1939 году доказать, что при делении одного уранового ядра высвобождается где-то 200 МэВ энергии. А вот на кинетическую энергию ядер-осколков отводится приблизительно 165 МэВ, а остаток уносит с собой гамма-кванты. Данное открытие совершило прорыв в квантовой физике.

Э.Ферми работы и исследования продолжает еще несколько лет и запускает первый ядерный реактор в 1942 году в США. Воплощенный проект получил название – «Чикагская поленница» и был поставлен на венные рельсы. 5 сентября 1945 года Канада запустила свой ядерный реактор ZEEP. Европейский континент не отставал, и в это же время возводилась установка Ф-1. А для россиян есть и другая памятная дата – 25 декабря 1946 года в Москве под руководством И.Курчатова запускается реактор. Это были не самые мощные ядерные реакторы, но это было началом освоения человеком атома.

В мирных целях научный ядерный реактор создали в 1954 году в СССР. Первый в мире мирный корабль с ядерной силовой установкой – атомный ледокол «Ленин» - был построен в Советском Союзе в 1959 году. И еще одно достижение нашего государства – атомный ледокол «Арктика». Данный надводный корабль впервые в мире достиг Северного полюса. Это случилось в 1975 году.

Первые портативные ядерные реакторы работали на медленных нейтронах.

Где используют ядерные реакторы и какие виды использует человечество

  • Промышленные реакторы. Их используют для выработки энергии на АЭС.
  • Атомные реакторы, выступающие как движетель атомных подводных лодок.
  • Экспериментальные (портативные, малые) реакторы. Без них не проходит ни один современный научный опыт или исследование.

Сегодня научный свет научился при помощи специальных реакторов опреснять морскую воду, обеспечивать население качественной питьевой водой. Действующих ядерных реакторов в России очень много. Так, по статистике по состоянию на 2018 год работает в государстве около 37 блоков.

А по классификации они могут быть следующими:

  • Исследовательские (исторические). К ним относят станцию Ф-1, которая создавалась как опытная площадка по получению плутония. На Ф-1 работал Курчатов И.В., руководил первым физическим реактором.
  • Исследовательские (действующие).
  • Оружейные. Как образец реактора – А-1, который вошел в историю, как первый реактор с охлаждением. Прошлая мощность ядерного реактора небольшая, но функциональная.
  • Энергетические.
  • Судовые. Известно, что на кораблях и подводных лодках по необходимости и технической целесообразности используют водо-водяные или жидкометаллические реакторы.
  • Космические. Как пример, назовем установку «Енисей» на космических кораблях, которая вступает в действие, если необходимо добыть дополнительное количество энергии, и получать ее придется при помощи солнечных батарей и изотопных источников.

Таким образом, тема о ядерных реакторах достаточно расширенная, поэтому требует глубокого изучения и понимания законов квантовой физики. Но значение ядерных реакторов для энергетики и экономики государства уже, бесспорно, овеяно аурой полезности и выгоды.

Устройство и принцип действия основаны на инициализации и контроле самоподдерживающейся ядерной реакции. Его используют в качестве исследовательского инструмента, для производства радиоактивных изотопов и в качестве источника энергии для атомных электростанций.

принцип работы (кратко)

Здесь используется процесс при котором тяжелое ядро ​​распадается на два более мелких фрагмента. Эти осколки находятся в очень возбужденном состоянии и испускают нейтроны, другие субатомные частицы и фотоны. Нейтроны могут вызвать новые деления, в результате которых их излучается еще больше, и так далее. Такой непрерывный самоподдерживающийся ряд расщеплений называется цепной реакцией. При этом выделяется большое количество энергии, производство которой является целью использования АЭС.

Принцип работы ядерного реактора и таков, что коло 85% энергии расщепления высвобождается в течение очень короткого промежутка времени после начала реакции. Остальная часть вырабатывается в результате радиоактивного распада продуктов деления, после того как они излучили нейтроны. Радиоактивный распад является процессом, при котором атом достигает более стабильного состояния. Он продолжается и после завершения деления.

В атомной бомбе цепная реакция увеличивает свою интенсивность, пока не будет расщеплена большая часть материала. Это происходит очень быстро, производя чрезвычайно мощные взрывы, характерные для таких бомб. Устройство и принцип действия ядерного реактора основаны на поддержании цепной реакции на регулируемом, почти постоянном уровне. Он сконструирован таким образом, что взорваться, как атомная бомба, не может.

Цепная реакция и критичность

Физика ядерного реактора деления состоит в том, что цепная реакция определяется вероятностью расщепления ядра после испускания нейтронов. Если популяция последних уменьшается, то скорость деления в конце концов упадет до нуля. В этом случае реактор будет находиться в докритическом состоянии. Если же популяция нейтронов поддерживается на постоянном уровне, то скорость деления будет оставаться стабильной. Реактор будет находиться в критическом состоянии. И, наконец, если популяция нейтронов со временем растет, скорость деления и мощность будет увеличиваться. Состояние активной зоны станет сверхкритическим.

Принцип действия ядерного реактора следующий. Перед его запуском популяция нейтронов близка к нулю. Затем операторы удаляют управляющие стержни из активной зоны, увеличивая деление ядер, что временно переводит реактор в сверхкритическое состояние. После выхода на номинальную мощность операторы частично возвращают управляющие стержни, регулируя количество нейтронов. В дальнейшем реактор поддерживается в критическом состоянии. Когда его необходимо остановить, операторы вставляют стержни полностью. Это подавляет деление и переводит активную зону в докритическое состояние.

Типы реакторов

Большинство существующих в мире ядерных установок являются энергетическими, генерирующими тепло, необходимое для вращения турбин, которые приводят в движение генераторы электрической энергии. Также есть много исследовательских реакторов, а некоторые страны имеют подводные лодки или надводные корабли, движимые энергией атома.

Энергетические установки

Существует несколько видов реакторов этого типа, но широкое применение нашла конструкция на легкой воде. В свою очередь, в ней может использоваться вода под давлением или кипящая вода. В первом случае жидкость под высоким давлением нагревается теплом активной зоны и поступает в парогенератор. Там тепло от первичного контура передается на вторичный, также содержащий воду. Генерируемый в конечном счете пар служит рабочей жидкостью в цикле паровой турбины.

Реактор кипящего типа работает по принципу прямого энергетического цикла. Вода, проходя через активную зону, доводится до кипения на среднем уровне давления. Насыщенный пар проходит через серию сепараторов и сушилок, расположенных в корпусе реактора, что приводит его в сверхперегретое состояние. Перегретый водяной пар затем используется в качестве рабочей жидкости, вращающей турбину.

Высокотемпературные с газовым охлаждением

Высокотемпературный газоохлаждаемый реактор (ВТГР) - это ядерный реактор, принцип работы которого основан на применении в качестве топлива смеси графита и топливных микросфер. Существуют две конкурирующие конструкции:

  • немецкая «засыпная» система, которая использует сферические топливные элементы диаметром 60 мм, представляющие собой смесь графита и топлива в графитовой оболочке;
  • американский вариант в виде графитовых гексагональных призм, которые сцепляются, создавая активную зону.

В обоих случаях охлаждающая жидкость состоит из гелия под давлением около 100 атмосфер. В немецкой системе гелий проходит через промежутки в слое сферических топливных элементов, а в американской - через отверстия в графитовых призмах, расположенных вдоль оси центральной зоны реактора. Оба варианта могут работать при очень высоких температурах, так как графит имеет чрезвычайно высокую температуру сублимации, а гелий полностью инертен химически. Горячий гелий может быть применен непосредственно в качестве рабочей жидкости в газовой турбине при высокой температуре или его тепло можно использовать для генерации пара водяного цикла.

Жидкометаллический и принцип работы

Реакторам на быстрых нейтронах с натриевым теплоносителем уделялось большое внимание в 1960-1970-х годах. Тогда казалось, что их возможности по воспроизводству в ближайшее время необходимы для производства топлива для быстро развивающейся атомной промышленности. Когда в 1980-е годы стало ясно, что это ожидание нереалистично, энтузиазм угас. Однако в США, России, Франции, Великобритании, Японии и Германии построен ряд реакторов этого типа. Большинство из них работает на диоксиде урана или его смеси с диоксидом плутония. В Соединенных Штатах, однако, наибольший успех был достигнут с металлическими топливом.

CANDU

Канада сосредоточила свои усилия на реакторах, в которых используется природный уран. Это избавляет от необходимости для его обогащения прибегать к услугам других стран. Результатом такой политики стал дейтерий-урановый реактор (CANDU). Контроль и охлаждение в нем производится тяжелой водой. Устройство и принцип работы ядерного реактора состоит в использовании резервуара с холодной D 2 O при атмосферном давлении. Активная зона пронизана трубами из циркониевого сплава с топливом из природного урана, через которые циркулирует охлаждающая его тяжелая вода. Электроэнергия производится за счет передачи теплоты деления в тяжелой воде охлаждающей жидкости, которая циркулирует через парогенератор. Пар во вторичном контуре затем проходит через обычный турбинный цикл.

Исследовательские установки

Для проведения научных исследований чаще всего используется ядерный реактор, принцип работы которого состоит в применении водяного охлаждения и пластинчатых урановых топливных элементов в виде сборок. Способен функционировать в широком диапазоне уровней мощности, от нескольких киловатт до сотен мегаватт. Поскольку производство электроэнергии не является основной задачей исследовательских реакторов, они характеризуются вырабатываемой тепловой энергией, плотностью и номинальной энергией нейтронов активной зоны. Именно эти параметры помогают количественно оценить способность исследовательского реактора проводить конкретные изыскания. Маломощные системы, как правило, функционируют в университетах и ​​используются для обучения, а высокая мощность необходима в научно-исследовательских лабораториях для тестирования материалов и характеристик, а также для общих исследований.

Наиболее распространен исследовательский ядерный реактор, строение и принцип работы которого следующие. Его активная зона расположена в нижней части большого глубокого бассейна с водой. Это упрощает наблюдение и размещение каналов, по которым могут быть направлены пучки нейтронов. При низких уровнях мощности нет необходимости прокачивать охлаждающую жидкость, так как для поддержания безопасного рабочего состояния естественная конвекция теплоносителя обеспечивает достаточный отвод тепла. Теплообменник, как правило, находится на поверхности или в верхней части бассейна, где скапливается горячая вода.

Корабельные установки

Первоначальным и основным применением ядерных реакторов является их использование в подводных лодках. Главным их преимуществом является то, что, в отличие от систем сжигания ископаемого топлива, для выработки электроэнергии им не требуется воздух. Следовательно, атомная субмарина может оставаться в погруженном состоянии в течение длительного времени, а обычная дизель-электрическая подлодка должна периодически подниматься на поверхность, чтобы запускать свои двигатели в воздухе. дает стратегическое преимущество кораблям ВМС. Благодаря ей отпадает необходимость заправляться в иностранных портах или от легко уязвимых танкеров.

Принцип работы ядерного реактора на подводной лодке засекречен. Однако известно, что в США в нем используется высокообогащенный уран, а замедление и охлаждение производится легкой водой. Конструкция первого реактора атомной субмарины USS Nautilus находилась под сильным влиянием мощных исследовательских установок. Его уникальными особенностями является очень большой запас реактивности, обеспечивающей длительный период работы без дозаправки и возможность перезапуска после остановки. Электростанция в подлодках должна быть очень тихой, чтобы избежать обнаружения. Для удовлетворения конкретных потребностей различных классов субмарин были созданы разные модели силовых установок.

На авианосцах ВМС США используется ядерный реактор, принцип работы которого, как полагают, заимствован у крупнейших подлодок. Подробные сведения их конструкции также не были опубликованы.

Кроме США, атомные подводные лодки имеются у Великобритании, Франции, России, Китая и Индии. В каждом случае конструкция не разглашалась, но считается, что все они весьма схожи - это является следствием одинаковых требований к их техническим характеристикам. Россия также обладает небольшим флотом на которых устанавливались такие же реакторы, как и на советских субмаринах.

Промышленные установки

Для целей производства используется ядерный реактор, принцип работы которого состоит в высокой производительности при низком уровне производства энергии. Это обусловлено тем, что длительное пребывание плутония в активной зоне приводит к накоплению нежелательного 240 Pu.

Производство трития

В настоящее время основным материалом, получаемым с помощью таких систем, является тритий (3 H или T) - заряд для Плутоний-239 имеет длительный период полураспада, равный 24100 годам, поэтому страны с арсеналами ядерного оружия, использующими этот элемент, как правило, имеют его больше, чем необходимо. В отличие от 239 Pu, период полураспада трития составляет примерно 12 лет. Таким образом, чтобы поддерживать необходимые запасы, этот радиоактивный изотоп водорода должен производиться непрерывно. В США в Саванна-Ривер (штат Южная Каролина), например, работает несколько реакторов на тяжелой воде, которые производят тритий.

Плавучие энергоблоки

Созданы ядерные реакторы, способные обеспечить электроэнергией и паровым отоплением удаленные изолированные районы. В России, например, нашли применение небольшие энергетические установки, специально предназначенные для обслуживания арктических населенных пунктов. В Китае 10-МВт установка HTR-10 снабжает теплом и электроэнергией исследовательский институт, в котором она находится. Разработки небольших автоматически управляемых реакторов с аналогичными возможностями ведутся в Швеции и Канаде. В период с 1960 по 1972 год армия США использовала компактные водяные реакторы для обеспечения удаленных баз в Гренландии и Антарктике. Они были заменены мазутными электростанциями.

Покорение космоса

Кроме того, были разработаны реакторы для энергоснабжения и передвижения в космическом пространстве. В период с 1967 по 1988 год Советский Союз устанавливал небольшие ядерные установки на спутники серии «Космос» для питания оборудования и телеметрии, но эта политика стала мишенью для критики. По крайней мере один из таких спутников вошел в атмосферу Земли, в результате чего радиоактивному загрязнению подверглись отдаленные районы Канады. Соединенные Штаты запустили только один спутник с ядерным реактором в 1965 году. Однако проекты по их применению в дальних космических полетах, пилотируемых исследованиях других планет или на постоянной лунной базе продолжают разрабатываться. Это обязательно будет газоохлаждаемый или жидкометаллический ядерный реактор, физические принципы работы которого обеспечат максимально высокую температуру, необходимую для минимизации размера радиатора. Кроме того, реактор для космической техники должен быть максимально компактным, чтобы свести к минимуму количество материала, используемого для экранирования, и для уменьшения веса во время старта и космического полета. Запас топлива обеспечит работу реактора на весь период космического полета.

Каж­дый день мы исполь­зуем элек­три­че­сто и не заду­мы­ва­емся над тем, как оно про­из­во­дится и как оно к нам попало. А тем не менее это одна из самых важ­ных частей совре­мен­ной циви­ли­за­ции. Без элек­три­че­ства не было бы ничего - ни света, ни тепла, ни движения.

Все знают про то, что элек­три­чевто выра­ба­ты­ва­ется на элек­тро­стан­циях, в том числе и на атом­ных. Сердце каж­дой АЭС - это ядер­ный реак­тор . Именно его мы будем раз­би­рать в этой статье.

Ядер­ный реак­тор , устрой­ство в кото­ром про­ис­те­кает управ­ля­е­мая цеп­ная ядер­ная реак­ция с выде­ле­нием тепла. В основ­ном ти устрой­ства исполь­зу­ются для выра­ботки элек­тро­энер­гии и в каче­стве при­вода боль­ших кораб­лей. Для того, чтобы пред­ста­вить себе, мощ­ность и эко­но­мич­ность ядер­ных реак­то­ров можно при­ве­сти при­мер. Там где сред­нему ядер­ному реак­тору потре­бу­ется 30 кило­грамм урана, сред­ней ТЭЦ потре­бу­ется 60 ваго­нов угля или 40 цистерн мазута.

Про­об­раз ядер­ного реак­тора был построен в декабре 1942 года в США под руко­вод­ством Э. Ферми. Это была так назы­ва­е­мая “Чикаг­ская стопка”. Chicago Pile (впо­след­ствии слово “Pile” наряду с дру­гими зна­че­ни­ями стало обо­зна­чать ядер­ный реак­тор). Такое назва­ние дали ему из-за того, что он напо­ми­нал собой боль­шую стопку гра­фи­то­вых бло­ков, поло­жен­ных один на другой.

Между бло­ками была поме­щены шаро­об­раз­ные “рабо­чие тела”, из при­род­ного урана и его диоксида.

В СССР пер­вый реак­тор был построен под руко­вод­ством ака­де­мика И. В. Кур­ча­това. Реак­тор Ф-1 был зара­бо­тал 25 декабря 1946 г. Реак­тор был в форме шара, имел в диа­метре около 7,5 мет­ров. Он не имел системы охла­жде­ния, поэтому рабо­тал на очень малых уров­нях мощности.


Иссле­до­ва­ния про­дол­жи­лись и в 27 июня 1954 года всту­пила в строй пер­вая в мире атом­ная элек­тро­стан­ция мощ­но­стью 5 МВт в г. Обнинске.

Прин­цип дей­ствия атом­ного реактора.

При рас­паде урана U 235 про­ис­хо­дит выде­ле­ние тепла, сопро­вож­да­е­мое выбро­сом двух-трех ней­тро­нов. По ста­ти­сти­че­ским дан­ным - 2,5. Эти ней­троны стал­ки­ва­ются с дру­гими ато­мами урана U 235 . При столк­но­ве­нии уран U 235 пре­вра­ща­ется в неста­биль­ный изо­топ U 236 , кото­рый прак­ти­че­ски сразу же рас­па­да­ется на Kr 92 и Ba 141 + эти самые 2–3 ней­трона. Рас­пад сопро­вож­да­ется выде­ле­нием энер­гии в виде гамма излу­че­ния и тепла.

Это и назы­ва­ется цеп­ная реак­ция. Атомы делятся, коли­че­ство рас­па­дов уве­ли­чи­ва­ется в гео­мет­ри­че­ской про­грес­сии, что в конеч­ном итоге при­во­дит к мол­ние­нос­ному, по нашим мер­кам высво­бож­де­нию огром­ного коли­че­ства энер­гии - про­ис­хо­дит атом­ный взрыв, как послед­ствие неуправ­ля­е­мой цеп­ной реакции.

Однако в ядер­ном реак­торе мы имеем дело с управ­ля­е­мой ядер­ной реак­цией. Как такая ста­но­вится воз­мож­ной - рас­ска­зано дальше.

Устрой­ство ядер­ного реактора.

В насто­я­щее время суще­ствует два типа ядер­ных реак­то­ров ВВЭР (водо-водяной энер­ге­ти­че­ский реак­тор) и РБМК (реак­тор боль­шой мощ­но­сти каналь­ный). Отли­чие в том, что РБМК - кипя­щий реак­тор, а ВВЭР исполь­зует воду под дав­ле­нием в 120 атмосфер.

Реак­тор ВВЭР 1000. 1 - при­вод СУЗ; 2 - крышка реак­тора; 3 - кор­пус реак­тора; 4 - блок защит­ных труб (БЗТ); 5 - шахта; 6 - выго­родка актив­ной зоны; 7 - топ­лив­ные сборки (ТВС) и регу­ли­ру­ю­щие стержни;

Каж­дый ядер­ный реак­тор про­мыш­лен­ного типа пред­став­ляет собой котел, сквозь кото­рый про­те­кает теп­ло­но­си­тель. Как пра­вило это обыч­ная вода (ок. 75% в мире), жид­кий гра­фит (20%) и тяже­лая вода (5%). В экс­пе­ри­мен­таль­ных целях исполь­зо­вался бери­лий и пред­по­ла­гался углеводород.

ТВЭЛ - (теп­ло­вы­де­ля­ю­щий эле­мент). Это стержни в цир­ко­ни­е­вой обо­лочке с нио­бий­ным леги­ро­ва­нием, внутри кото­рых рас­по­ло­жены таб­летки из диок­сида урана.

ТВЭЛы в кас­сете выде­лены зеленым.


Топ­лив­ная кас­сета в сборе.

Актив­ная зона реак­тора состоит из сотен кас­сет, постав­лен­ных вер­ти­кально и объ­еди­нен­ных вме­сте метал­ли­че­ской обо­лоч­кой - кор­пу­сом, игра­ю­щим также роль отра­жа­те­лем ней­тро­нов. Среди кас­сет, с регу­ляр­ной часто­той встав­лены управ­ля­ю­щие стержни и стержни ава­рий­ной защиты реак­тора, кото­рые в слу­чае пере­грева при­званы заглу­шить реактор.

При­ве­дем в при­мер дан­ные по реак­тору ВВЭР-440:

Управ­ля­ю­щие могут пере­ме­щаться вверх и вниз погру­жа­ясь или наобо­рот, выходя из актив­ной зоны, где реак­ция идет интен­сив­нее всего. Это обес­пе­чи­вают мощ­ные элек­тро­мо­торы, в сово­куп­но­сти с систе­мой управления.Стержни ава­рий­ной защиты при­званы заглу­шить реак­тор в слу­чает нештат­ной ситу­а­ции, упав в актив­ную зону и погло­тив больше коли­че­ство сво­бод­ных нейтронов.

Каж­дый реак­тор имеет крышку, через кото­рую про­из­во­дится погрузка и выгрузка отра­бо­тав­ших и новых кассет.

Поверх кор­пуса реак­тора обычно уста­нав­ли­ва­ется теп­ло­изо­ля­ция. Сле­ду­ю­щим барье­ром идет био­ло­ги­че­ская защита. Это как пра­вило желе­зо­бе­тон­ный бун­кер, вход в кото­рый закры­ва­ется шлю­зо­вой каме­рой с гер­ме­тич­ными дверьми. Био­ло­ги­че­ская защита при­звана не выпу­стить в атмо­сферу радио­ак­тив­ный пар и куски реак­тора, если все таки про­изой­дет взрыв.

Ядер­ный взрыв в совре­мен­ных реак­тора крайне мало воз­мо­жен. Потому что топ­ливо доста­точно мало обо­га­щено, и раз­де­лено на ТВЕЛы. Даже если рас­пла­вится актив­ная зона, топ­ливо не смо­жет настолько активно про­ре­а­ги­ро­вать. Маси­мум что может про­изойти - теп­ло­вой взрыв как на Чер­но­быле, когда дав­ле­ние в реак­торе достигло таких вели­чин, что метал­ли­че­ский кор­пус про­сто разо­рвало, а крышка реак­тора, весом в 5000 тонн сде­лала пры­жок с пере­во­ро­том, про­бив крышу реак­тор­ного отсека и выпу­стив пар наружу. Если бы чер­но­быль­ская АЭС была осна­щена пра­виль­ной био­ло­ги­че­ской защи­той, напо­до­бие сего­дняш­него сар­ко­фага, то ката­строфа обо­шлась чело­ве­че­ству намного дешевле.

Работа атом­ной электростанции.

Если в двух сло­вах, то рабо­боа выгля­дит так.

Атом­ная элек­тро­стан­ция. (Кликабельно)

После поступ­ле­ния в актив­ную зону реак­тора с помо­щью насо­сов, вода нагре­ва­ется с 250 до 300 гра­ду­сов и выхо­дит с “дру­гой сто­роны” реак­тора. Это назы­ва­ется пер­вым кон­ту­ром. После чего направ­ля­ется в теп­л­об­мен­ник, где встре­ча­ется со вто­рым кон­ту­ром. После чего пар под дав­ле­нием посту­пает на лопатки тур­бин. Тур­бины выра­ба­ты­вают электричество.

Так же при необходимости быстро охладить реактор используются ведро воды и лёд .

Элемент Теплоемкость
Охлаждающий стержень 10к (англ. 10k Coolant Cell)
10 000

Охлаждающий стержень 30к (англ. 30К Coolant Cell)
30 000

Охлаждающий стержень 60к (англ. 60К Coolant Cell)
60 000

Красный конденсатор (англ. RSH-Condensator)
19 999
Поместив перегретый конденсатор в сетку крафта вместе с пылью редстоуна можно восполнить его запас тепла на 10000 еТ. Таким образом для полного восстановления конденсатора нужно две пыли.
Лазуритовый конденсатор (англ. LZH-Condensator)
99 999
Восполняется не только редстоуном (5000 еТ), но ещё и лазуритом на 40000 еТ.

Охлаждение ядерного реактора (до версии 1.106)

  • Охлаждающий стержень может хранить 10 000 еТ и каждую секунду охлаждается на 1 еТ.
  • Обшивка реактора так же хранит 10 000 еТ, каждую секунду охлаждается с шансом 10 % на 1 еТ (в среднем 0.1 еТ). Через термопластины твэлы и теплораспределители могут распредилить тепло на большее число охлаждающих элементов.
  • Теплораспределитель хранит 10 000 еТ, а также балансирует уровень тепла близлежащих элементов, но перераспределяя не более 6 еТ/с на каждый. Также перераспределяет тепло на корпус, до 25 еТ/с.
  • Пассивное охлаждение.
  • Каждый блок воздуха, окружающий реактор в области 3х3х3 вокруг ядерного реактора, охлаждает корпус на 0.25 еТ/с, и каждый блок воды охлаждает на 1 еТ/с.
  • Кроме того, реактор сам по себе охлаждается на 1 еТ/с, благодаря внутренней системе вентиляции.
  • Каждая дополнительная камера реактора тоже обладает вентиляцией и охлаждает корпус ещё на 2 еТ/с.
  • Но если в зоне 3х3х3 есть блоки лавы (источники или течения), то они уменьшают охлаждение корпуса на 3 еТ/с. И горящий огонь в этой же области уменьшает охлаждение на 0,5 еТ/с.
Если суммарное охлаждение отрицательно, то охлаждение будет нулевым. То есть корпус реактора не будет охлаждаться. Можно посчитать, что максимальное пассивное охлаждение: 1+6*2+20*1 = 33 еТ/с.
  • Аварийное охлаждение (до версии 1.106).
Помимо обычных охлаждающих систем, есть «аварийные» охладители, которые могут быть использованы для экстренного охлаждения реактора (даже с высоким тепловыделением):
  • Ведро воды , положенное в активную зону, остужает корпус Ядерного реактора на 250 еТ в случае, если он нагрет не менее, чем на 4 000 еТ.
  • Лёд остужает корпус на 300 еТ в случае, если он нагрет не менее, чем на 300 еТ.

Классификация ядерных реакторов

Ядерные реакторы имеют свою классификацию: МК1, МК2, МК3, МК4 и МК5. Типы определяются по выделению тепла и энергии, а также по некоторым другим аспектам. МК1 - самый безопасный, но вырабатывает меньше всего энергии. МК5 вырабатывает больше всего энергии при наибольшей вероятности взрыва.

MК1

Самый безопасный тип реактора, который совершенно не нагревается, и в то же время производит меньше всего энергии. Подразделяется на два подтипа: МК1А - тот, который соблюдает условия класса вне зависимости от окружающей среды и МК1Б - тот, который требует пассивного охлаждения, чтобы соблюдать стандарты класса 1.

МК2

Самый оптимальный вид реактора, который при работе на полной мощности не нагревается более, чем на 8500 еТ за цикл (время, за которое ТВЭЛ успевает полностью разрядится или 10000 секунд). Таким образом, это оптимальный компромисс тепла/энергии. Для таких типов реакторов также есть отдельная классификация МК2x, где х - это количество циклов, которое реактор будет работать без критического перегрева. Число может быть от 1 (один цикл) до E (16 циклов и больше). MK2-E является эталоном среди всех ядерных реакторов, поскольку является практически вечным. (То есть, до окончания 16 цикла реактор успеет охладится до 0 еТ)

МК3

Реактор, который может работать по крайней мере 1/10 полного цикла без испарения воды/плавления блоков. Более мощный, чем МК1 и МК2, но требует дополнительного присмотра, ведь за некоторое время температура может достигнуть критического уровня.

МК4

Реактор, который может работать по крайней мере 1/10 полного цикла без взрывов. Наиболее мощный из работоспособных видов Ядерных Реакторов, который требует наибольшего внимания. Требует постоянного присмотра. За первый раз издаёт приблизительно от 200 000 до 1 000 000 еЭ.

МК5

Ядерные реакторы 5-ого класса неработоспособны, в основном используются для доказательства того факта, что они взрываются. Хотя возможно сделать и работоспособный реактор такого класса, однако смысла в этом никакого нет.

Дополнительная классификация

Даже несмотря на то, что реакторы и так имеют целых 5 классов, реакторы иногда подразделяют ещё на несколько незначительных, однако немаловажных подклассов вида охлаждения, эффективности и производительности.

Охлаждение

-SUC (single use coolants - одноразовое использование охлаждающих элементов)

  • до версии 1.106 эта маркировка обозначала охлаждение реактора экстренным способом (с помощью вёдер воды или льда). Обычно такие реакторы используются редко или не используются совсем ввиду того, что без присмотра реактор может проработать не очень долго. Это обычно использовалось для Mk3 или Mk4.
  • после версии 1.106 появились тепловые конденсаторы. Подкласс -SUC теперь обозначает наличие в схеме тепловых конденсаторов. Их теплоёмкость можно быстро восстановить, но при этом придётся тратить красную пыль или лазурит .

Эффективность

Эффективность - это среднее число импульсов, производимых твэлами. Грубо говоря, это количество миллионов энергии, получаемой в результате работы реактора, поделённое на число твэлов. Но в случае схем обогатителей часть импульсов расходуется на обогащение, и в этом случае эффективность не совсем соответствует полученной энергии и будет выше.

Сдвоенные и счетверённые твэлы обладают большей базовой эффективностью по сравнению с одиночными. Сами по себе одиночные твэлы производят один импульс, сдвоенные - два, счетверённые - три. Если в одной из четырёх соседних клеток будет находиться другой ТВЭЛ, обеднённый ТВЭЛ или нейтронный отражатель, то число импульсов увеличивается на единицу, то есть максимум ещё на 4. Из вышесказанного становится понятно, что эффективность не может быть меньше 1 или больше 7.

Маркировка Значение
эффективности
EE =1
ED >1 и <2
EC ≥2 и <3
EB ≥3 и <4
EA ≥4 и <5
EA+ ≥5 и <6
EA++ ≥6 и <7
EA* =7

Иные подклассы

На схемах реакторов вы можете иногда увидеть дополнительные буквы, аббревиатуры или другие символы. Эти символы хоть и используются (например, раньше подкласс -SUC официально не был зарегистрирован), но большой популярности они не имеют. Поэтому вы можете назвать свой реактор хоть Mk9000-2 EA^ dzhigurda, однако такой вид реактора просто не поймут и сочтут это за шутку.

Постройка реактора

Все мы знаем, что реактор нагревается, и может внезапно произойти взрыв. И нам приходится то выключать, то включать его. Далее написано, как можно защитить свой дом, а также как максимально использовать реактор, который никогда не взорвётся. При этом у вас должно быть уже поставлены 6 реакторных камер .

    Вид реактора с камерами. Ядерный реактор внутри.

  1. Обложить реактор укреплённым камнем (5х5x5)
  2. Сделать пассивное охлаждение, то есть залить весь реактор водой. Заливайте его сверху, поскольку вода потечёт вниз. С помощью такой схемы реактор будет охлаждаться на 33 еТ за сек.
  3. Сделать максимальное количество вырабатываемой энергии с охлаждающими стержнями и т. д. Будьте внимательны, поскольку если будет неправильно расставленный хотя бы 1 теплораспределитель , может произойти катастрофа! (схема приведена для версии до 1.106)
  4. Дабы наш МФЭ не взорвался от высокого напряжения, ставим трансформатор, как на картинке.

Реактор Mk-V EB

Многим известно, что обновления вносят изменения. Одним из этих обновлений были внесены новые твэлы - сдвоенный и счетверённый. Схема, которая находится выше, не подходит к этим твэлам. Ниже предоставлено подробное описание изготовления довольно опасного, но эффективного реактора. Для этого к IndustrialCraft 2 нужен Nuclear Control. Данный реактор заполнил MFSU и MFE примерно за 30 минут реального времени. К сожалению, это реактор класса МК4. Но он выполнил свою задачу нагревшись до 6500 еТ. Рекомендуется поставить на температурном датчике 6500 и подключить к датчику сигнализацию и экстренную систему отключения. Если тревога орёт дольше двух минут, то лучше выключить реактор вручную. Постройка такая же, как и сверху. Изменено лишь расположение компонентов.

Выходная мощность: 360 еЭ/т

Всего еЭ: 72 000 000 еЭ

Время генерации: 10 мин. 26 сек.

Время перезарядки: Невозможно

Максимум циклов: 6,26 % цикла

Общее время: Никогда

Самое главное в таком реакторе - не дать ему взорваться!

Реактор Mk-II-E-SUC Breeder EA+ с возможностью обогащения обеднённых твэлов

Достаточно эффективный но дорогостоящий вид реактора. За минуту вырабатывает 720 000 еТ и конденсаторы нагреваются на 27/100, следовательно, без охлаждения конденсаторов реактор выдержит 3 минутных цикла, а 4-й почти наверняка взорвёт его. Возможна установка обеднённых твэлов для обогащения. Рекомендуется подключение реактора к таймеру и заключение реактора в «саркофаг» из укреплённого камня. Из-за высокого выходного напряжения (600 еЭ/т) необходимы высоковольтные провода и трансформатор ВН.

Выходная мощность: 600 еЭ/т

Всего еЭ: 120 000 000 еЭ

Время генерации: Полный цикл

Реактор Mk-I EB

Элементы не нагреваются вообще, работают 6 счетверённых твэлов.

Выходная мощность: 360 еЭ/т

Всего еЭ: 72 000 000 еЭ

Время генерации: Полный цикл

Время перезарядки: Не требуется

Максимум циклов: Бесконечное число

Общее время: 2 ч. 46 мин. 40 сек.

Реактор Mk-I EA++

Маломощный, но экономичный к сырью и дешёвый в постройке. Требует отражателей нейтронов .

Выходная мощность: 60 еЭ/т

Всего еЭ: 12 000 000 еЭ

Время генерации: Полный цикл

Время перезарядки: Не требуется

Максимум циклов: Бесконечное число

Общее время: 2 ч. 46 мин. 40 сек.

Реактор Mk-I EA*

Средней мощности но относительно дешёвый и максимально эффективный. Требует отражателей нейтронов .

Выходная мощность: 140 еЭ/т

Всего еЭ: 28 000 000 еЭ

Время генерации: Полный цикл

Время перезарядки: Не требуется

Максимум циклов: Бесконечное число

Общее время: 2 ч. 46 мин. 40 сек.

Реактор Mk-II-E-SUC Breeder EA+, обогащение урана

Компактный и дешёвый к постройке обогатитель урана. Время безопасной работы - 2 минуты 20 секунд, после чего рекомендуется чинить лазуритовые конденсаторы (ремонт одного - 2 лазурита + 1 редстоун), из-за чего придется постоянно следить за реактором. Также из-за неравномерного обогащения сильно обогащенные стержни рекомендуется менять местами со слабо обогащенными. В то же время может выдать за цикл 48 000 000 еЭ.

Выходная мощность: 240 еЭ/т

Всего еЭ: 48 000 000 еЭ

Время генерации: Полный цикл

Время перезарядки: Не требуется

Максимум циклов: Бесконечное число

Общее время: 2 ч. 46 мин. 40 сек.

Реактор Mk-I EC

«Комнатный» реактор. Имеет невысокую мощность, зато очень дешёв и абсолютно безопасен - весь присмотр за реактором сводится к замене стержней, поскольку охлаждение вентиляцией превышает теплогенерацию в 2 раза. Лучше всего поставить его вплотную к МФЭ /МФСУ и настроить их на подачу сигнала редстоуна при частичной зарядке (Emit if partially filled), таким образом реактор будет автоматически заполнять энергохранитель и отключаться при его заполнении. Для крафта всех компонентов потребуется 292 меди, 102 железа, 24 золота, 8 редстоуна, 7 резины, 7 олова, 2 единицы светопыли и лазурита, а также 6 единиц урановой руды. За цикл выдает 16 млн еЭ.

Выходная мощность: 80 еЭ/т

Всего еЭ: 32 000 000 еЭ

Время генерации: Полный цикл

Время перезарядки: Не требуется

Максимум циклов: Бесконечное число

Общее время: около 5 ч. 33 мин. 00 сек.

Таймер реактора

Реакторы классов MK3 и MK4 вырабатывают действительно много энергии в короткие сроки, но они имеют тенденцию взрываться без присмотра. Но с помощью таймера, можно заставить даже эти капризные реакторы работать без критического перегрева и позволить вам отлучится, например, чтобы накопать песочка для вашей фермы кактусов. Вот три примера таймеров:

  • Таймер из раздатчика , деревянной кнопки и стрел (Рис. 1). Выпущенная стрела - это сущность , время её жизни равно 1 минуте. При подсоединении деревянной кнопки с застрявшей в ней стрелой к реактору, тот будет работать ~ 1 мин. 1.5 сек. Лучше всего будет открыть доступ к деревянной кнопке, тогда можно будет экстренно остановить реактор. Заодно меньшится расход стрел, так как при соединении раздатчика с ещё одной кнопкой, кроме деревянной, после нажатия раздатчик выпускает сразу 3 стрелы из-за множественного сигнала.
  • Таймер из деревянной нажимной пластины (Рис. 2). Деревянная нажимная пластина реагирует, если на неё упадет какой-либо предмет. У выпавших передметов «срок жизни» равен 5 минутам (в SMP возможны отклонения из-за пинга), и если подсоединить пластину к реактору, тот будет работать ~ 5 мин. 1 сек. При создании множества таймеров, можно поставить этот таймер на первое место в цепочке, чтобы не ставить раздатчик . Тогда все цепь таймеров будет запускаться выбрасыванием игроком предмета на нажимную пластину.
  • Таймер из повторителей (Рис. 3). Таймер из повторителей может использоваться для точной настройки задержки работы реактора, но он очень громоздок и требует большое количество ресурсов для создания даже малой задержки. Сам таймер - это линия поддержки сигнала (10.6) . Как видно, он занимает много места, и на задержку сигнала в 1.2 сек. требуется целых 7 повторителей (21

    Пассивное охлаждение (до версии 1.106)

    Базовое охлаждение самого реактора равно 1. Далее проверяется область 3х3х3 вокруг реактора. Каждая камера реактора добавляет к охлаждению 2. Блок с водой (источником или течением) добавляет 1. Блок с лавой (источником или течением) уменьшает на 3. Блоки с воздухом и огнем считаются отдельно. Они добавляют к охлаждению (число блоков воздуха-2×число блоков с огнем)/4 (если результат деления не целое число, то дробная часть отбрасывается). Если суммарное охлаждение меньше 0, то оно считается равным 0.
    То есть корпус реактора не может нагреться из-за внешних факторов. В худшем случае он просто не будет охлаждаться за счёт пассивного охлаждения.

    Температура

    При высокой температуре реактор начинает отрицательно воздействовать на окружающую среду. Это воздействие зависит от коэффициента нагрева. Коэффициент нагрева=Текущая температура корпуса реактора/Максимальная температура , где Максимальная температура реактора=10000+1000*число камер реактора+100*число термопластин внутри реактора .
    Если коэффициент нагрева:

    • <0,4 - никаких последствий нет.
    • >=0,4 - есть шанс 1,5×(коэффициент нагрева-0,4) , что будет произведён выбор случайного блока в зоне 5×5×5 , и если это окажется воспламеняющийся блок, такой как листья, какой-либо деревянный блок, шерсть или кровать, то он сгорит.
    То есть при коэффициенте нагрева 0,4 шансы нулевые, при 0,67 выше будет 100 %. То есть при коэффициенте нагрева 0,85 шанс будет 4×(0,85-0,7)=0,6 (60 %), а при 0,95 и выше шанс будет 4×(95-70)=1 (100 %). В зависимости от типа блока произойдёт следующее:
    • если это центральный блок (сам реактор) или блок коренной породы, то эффекта не будет.
    • каменные блоки(в том числе ступеньки и руда), железные блоки(в том числе и блоки реактора), лава, земля, глина будут превращены в поток лавы.
    • если это блок воздуха, то на его месте будет попытка зажечь огонь (если рядом нет твёрдых блоков, огонь не появится).
    • остальные блоки (в том числе и вода) будут испаряться, и на их месте тоже будет попытка зажечь огонь.
    • >=1 - Взрыв! Базовая мощность взрыва равна 10. Каждый ТВЭЛ в реакторе увеличивает мощность взрыва на 3 единицы, а каждая обшивка реактора уменьшает его на единицу. Также мощность взрыва ограничена максимумом в 45 единиц. По числу выпадения блоков этот взрыв аналогичен ядерной бомбе, 99 % блоков после взрыва уничтожатся, а дроп составит лишь 1 %.

    Расчёт нагрева или низкообогащённый ТВЭЛ , то корпус реактора нагревается на 1 еТ.

  • Если это ведро воды , и температура корпуса реактора больше 4000 еТ, то корпус охлаждается на 250 еТ, а ведро воды заменяется на пустое ведро.
  • Если это ведро лавы , то корпус реактора нагревается на 2000 еТ, а ведро лавы заменяется на пустое ведро.
  • Если это блок льда , и температура корпуса более 300 еТ, то корпус охлаждается на 300 еТ, а количество льда уменьшается на 1. То есть сразу весь стак льда не испарится.
  • Если это теплораспределитель , то проводится такой расчёт:
    • Проверяется 4 соседние ячейки, в следующем порядке: левая, правая, верхняя и нижняя.
Если в них есть охлаждающая капсула или обшивка реактора, то производится рассчёт баланса тепла. Баланс=(температура теплораспределителя-температура соседнего элемента)/2
  1. Если баланс больше 6, он приравнивается 6.
  2. Если соседний элемент - охлаждающая капсула, то он нагревается на значение вычисленного баланса.
  3. Если это обшивка реактора, то производится дополнительный расчёт передачи тепла.
  • Если рядом с этой пластиной нет охлаждающих капсул, то пластина нагреется на значение вычисленного баланса (на другие элементы тепло от теплораспределителя через термопластину не идёт).
  • Если есть охлаждающие капсулы, то проверяется, делится ли баланс тепла на их количество без остатка. Если не делится, то баланс тепла увеличивается на 1 еТ, и пластина охлаждается на 1 еТ, пока не будет делиться нацело. Но если обшивка реактора остывшая, и нацело баланс не делится, то она нагревается, а баланс уменьшается, пока не станет делиться нацело.
  • И, соответственно, эти элементы нагреваются на температуру, равную Баланс/количество .
  1. Он берется по модулю, и если он больше 6, то приравнивается к 6.
  2. Теплораспределитель нагревается на значение баланса.
  3. Соседний элемент охлаждается на значение баланса.
  • Производится расчёт баланса тепла между теплораспределителем и корпусом.
Баланс=(температура теплораспределителя-температура корпуса+1)/2 (если результат деления не целое число, то дробная часть отбрасывается)
  • Если баланс положительный, то:
  1. Если баланс больше 25, он приравнивается к 25.
  2. Теплораспределитель охлаждается на значение вычисленного баланса.
  3. Корпус реактора нагревается на значение вычисленного баланса.
  • Если баланс отрицательный, то:
  1. Он берется по модулю и если получается больше 25, то он приравнивается к 25.
  2. Теплораспределитель нагревается на значение вычисленного баланса.
  3. Корпус реактора охлаждается на значение вычисленного баланса.
  • Если это ТВЭЛ, и реактор не заглушен сигналом красной пыли, то проводятся такие расчёты:
Считается число импульсов, генерирующих энергию для данного стержня. Число импульсов=1+количество соседних урановых стержней . Соседние - это те, которые находятся в слотах справа, слева, сверху и снизу. Подсчитывается количество энергии генерируемое стержнем. Количество энергии(еЭ/т)=10×Число импульсов . еЭ/т - единица энергии за такт (1/20 часть секунды) Если рядом с урановым стержнем есть обеднённый ТВЭЛ , то число импульсов увеличивается на их количество. То есть Число импульсов=1+количество соседних урановых стержней+количество соседних обеднённых твэлов . Также проверяются эти соседние обеднённые твэлы , и с некоторой вероятностью они обогащаются на две единицы. Причём шанс обогащения зависит от температуры корпуса и если температура:
  • менее 3000 - шанс 1/8 (12,5 %);
  • от 3000 и менее 6000 - 1/4 (25 %);
  • от 6000 и менее 9000 - 1/2 (50 %);
  • 9000 или выше - 1 (100 %).
При достижении обеднённым твэлом значения обогащения в 10000 единиц, он превращается в низкообогащённый ТВЭЛ . Дальше для каждого импульса рассчитывается генерация тепла. То есть расчёт производится столько раз, сколько получилось импульсов. Считается количество охлаждающих элементов (охлаждающие капсулы, термопластины и теплораспределители) рядом с урановым стержнем. Если их количество равно:
  • 0? корпус реактора нагревается на 10 еТ.
  • 1: охлаждающий элемент нагревается на 10 еТ.
  • 2: охлаждающие элементы нагреваются каждый на 4 еТ.
  • 3: нагреваются каждый на 2 еТ.
  • 4: нагреваются каждый на 1 еТ.
Причём если там есть термопластины, то они будет также перераспределять энергию. Но в отличие от первого случая, пластины рядом с урановым стержнем могут распределить тепло и на охлаждающие капсулы, и на следующие термопластины. А следующие термопластины могут распределить тепло дальше лишь на охлаждающие стержни . ТВЭЛ уменьшает свою прочность на 1 (изначально она равна 10000), и если она достигает 0, то он уничтожается. Дополнительно с шансом 1/3 при уничтожении он оставит после себя исчерпанный ТВЭЛ .

Пример расчёта

Существуют программы, рассчитывающие эти схемы. Для более надёжных расчётов и большего понимания процесса стоит использовать их.

Возьмем к примеру такую схему с тремя урановыми стержнями.

Цифрами обозначен порядок расчёта элементов в этой схеме, и этими же цифрами будем обозначать элементы, чтобы не запутаться.

Для примера рассчитаем распределение тепла на первой и второй секундах. Будем считать, что вначале нагрев элементов отсутствует, пассивное охлаждение максимально (33 еТ), и охлаждение термопластин не будем учитывать.

Первый шаг.

  • Температура корпуса реактора 0 еТ.
  • 1 - Обшивка реактора (ТП) ещё не нагрета.
  • 2 - Охлаждающая капсула (ОхС) ещё не нагрет, и охлаждаться на этом шаге уже не будет (0 еТ).
  • 3 - ТВЭЛ выделит по 8 еТ (2 такта по 4 еТ) на 1ю ТП (0 еТ), что нагреет её до 8 еТ, и на 2й ОхС (0 еТ), что нагреет его до 8 еТ.
  • 4 - ОхС ещё не нагрет, и охлаждаться на этом шаге уже не будет (0 еТ).
  • 5 - Теплораспределитель (ТР), ещё не нагретый, сбалансирует температуру со 2м ОхС (8 еТ). Охладит его до 4 еТ и сам нагреется до 4 еТ.
Далее 5й ТР (4 еТ) сбалансирует температуру у 10го ОхС (0 еТ). Нагреет его до 2 еТ, и сам охладится до 2 еТ. Далее 5й ТР (2 еТ) сбалансирует температуру корпуса (0 еТ), отдав ему 1 еТ. Корпус нагреется до 1 еТ, и ТР охладится до 1 еТ.
  • 6 - ТВЭЛ выделит по 12 еТ (3 такта по 4 еТ) на 5й ТР (1 еТ), что нагреет его до 13 еТ, и на 7ю ТП (0 еТ), что нагреет её до 12 еТ.
  • 7 - ТП уже нагрета до 12 еТ и может охладиться с шансом 10 %, но мы не учитываем тут шанс охлаждения.
  • 8 - ТР (0 еТ) сбалансирует температуру у 7й ТП (12 еТ), и заберет у неё 6 еТ. 7я ТП охладится до 6 еТ, и 8й ТР нагреется до 6 еТ.
Далее 8й ТР(6 еТ) сбалансирует температуру у 9го ОхС(0 еТ). В итоге он нагреет его до 3 еТ, и сам охладится до 3 еТ. Далее 8й ТР (3 еТ) сбалансирует температуру у 4го ОхС (0 еТ). В итоге он нагреет его до 1 еТ, и сам охладится до 2 еТ. Далее 8й ТР (2 еТ) сбалансирует температуру у 12го ОхС (0 еТ). В итоге он нагреет его до 1 еТ, и сам охладится до 1 еТ. Далее 8й ТР (1 еТ) сбалансирует температуру корпуса реактора(1 еТ). Так как разницы температур нет, ничего не происходит.
  • 9 - ОхС (3 еТ) охладится до 2 еТ.
  • 10 - ОхС (2 еТ) охладится до 1 еТ.
  • 11 - ТВЭЛ выделит по 8 еТ (2 такта по 4 еТ) на 10й ОхС (1 еТ), что нагреет его до 9 еТ, и на 13ю ТП (0 еТ), что нагреет её до 8 еТ.

На рисунке красные стрелочки показывают нагрев от урановых стержней, синие - балансировку тепла теплораспределителями, желтые - распределение энергии на корпус реактора, коричневые - итоговый нагрев элементов на данном шаге, голубые - охлаждение для охлаждающих капсул. Цифры в верхнем правом углу показывают итоговый нагрев, а для урановых стержней - время работы.

Итоговый нагрев после первого шага:

  • корпус реактора - 1 еТ
  • 1ТП - 8 еТ
  • 2ОхС - 4 еТ
  • 4ОхС - 1 еТ
  • 5ТР - 13 еТ
  • 7ТП - 6 еТ
  • 8ТР - 1 еТ
  • 9ОхС - 2 еТ
  • 10ОхС - 9 еТ
  • 12ОхС - 0 еТ
  • 13ТП - 8 еТ

Второй шаг.

  • Корпус реактора охладится до 0 еТ.
  • 1 - ТП, не учитываем охлаждение.
  • 2 - ОхС (4 еТ) охладится до 3 еТ.
  • 3 - ТВЭЛ выделит по 8 еТ (2 такта по 4 еТ) на 1ю ТП (8 еТ), что нагреет её до 16 еТ, и на 2й ОхС (3 еТ), что нагреет его до 11 еТ.
  • 4 - ОхС (1 еТ) охладится до 0 еТ.
  • 5 - ТР (13 еТ) сбалансирует температуру со 2м ОхС (11 еТ). Нагреет его до 12 еТ, и сам охладится до 12 еТ.
Далее 5й ТР (12 еТ) сбалансирует температуру у 10го ОхС (9 еТ). Нагреет его до 10 еТ, и сам охладится до 11 еТ. Далее 5й ТР (11 еТ) сбалансирует температуру корпуса (0 еТ), отдав ему 6 еТ. Корпус нагреется до 6 еТ, и 5й ТР охладится до 5 еТ.
  • 6 - ТВЭЛ выделит по 12 еТ (3 такта по 4 еТ) на 5й ТР (5 еТ), что нагреет его до 17 еТ, и на 7ю ТП (6 еТ), что нагреет её до 18 еТ.
  • 7 - ТП (18 еТ), не учитываем охлаждение.
  • 8 - ТР (1 еТ) сбалансирует температуру у 7й ТП (18 еТ) и заберёт у неё 6 еТ. 7я ТП охладится до 12 еТ, и 8й ТР нагреется до 7 еТ.
Далее 8й ТР (7 еТ) сбалансирует температуру у 9го ОхС (2 еТ). В итоге он нагреет его до 4 еТ, и сам охладится до 5 еТ. Далее 8й ТР (5 еТ) сбалансирует температуру у 4го ОхС (0 еТ). В итоге он нагреет его до 2 еТ, и сам охладится до 3 еТ. Далее 8й ТР (3 еТ) сбалансирует температуру у 12го ОхС (0 еТ). В итоге он нагреет его до 1 еТ, и сам охладится до 2 еТ. Далее 8й ТР (2 еТ) сбалансирует температуру корпуса реактора (6 еТ), забрав у него 2 еТ. Корпус охладится до 4 еТ, и 8й ТР нагреется до 4 еТ.
  • 9 - ОхС (4 еТ) охладится до 3 еТ.
  • 10 - ОхС (10 еТ) охладится до 9 еТ.
  • 11 - ТВЭЛ выделит по 8 еТ (2 такта по 4 еТ) на 10й ОхС (9 еТ), что нагреет его до 17 еТ, и на 13ю ТП (8 еТ), что нагреет её до 16 еТ.
  • 12 - ОхС (1 еТ) охладится до 0 еТ.
  • 13 - ТП (8 еТ), не учитываем охлаждение.


Итоговый нагрев после второго шага:

  • корпус реактора - 4 еТ
  • 1ТП - 16 еТ
  • 2ОхС - 12 еТ
  • 4ОхС - 2 еТ
  • 5ТР - 17 еТ
  • 7ТП - 12 еТ
  • 8ТР - 4 еТ
  • 9ОхС - 3 еТ
  • 10ОхС - 17 еТ
  • 12ОхС - 0 еТ
  • 13ТП - 16 еТ

© 2024 skudelnica.ru -- Любовь, измена, психология, развод, чувства, ссоры