Кто открыл золотое сечение. Как работает золотое сечение

Главная / Бывшие

Золотое сечение – это простой принцип, который поможет сделать дизайн приятным для визуального восприятия. В этой статье мы подробно расскажем как и зачем его использовать.

Распространенная в природе математическая пропорция, называемая Золотое сечение, или Золотая середина, основана на Последовательности Фибоначчи (о которой вы, скорее всего, слышали в школе, или читали в книге Дэна Брауна «Код да Винчи»), и подразумевает под собой соотношение сторон 1:1,61.

Такое соотношение сплошь и рядом встречается в нашей жизни (ракушки, ананасы, цветы и т.д.) и поэтому воспринимается человеком как нечто естественное, приятное взгляду.

→ Золотое сечение это взаимосвязь между двумя числами в последовательности Фибоначчи
→ Построение этой последовательности в масштабе дает спирали, которые можно увидеть в природе.

Считается, что Золотое сечение используется человечеством в искусстве и дизайне уже более 4 тысяч лет, а возможно даже больше, если верить ученым, которые утверждают, что древние Египтяне использовали этот принцип при строительстве пирамид.

Знаменитые примеры

Как мы уже говорили, Золотое сечение можно видеть на протяжении всей истории искусства и архитектуры. Вот некоторые примеры, которые только подтверждают обоснованность использования этого принципа:

Архитектура: Парфенон

В древнегреческой архитектуре Золотое сечение использовалось для вычисления идеальной пропорции между высотой и шириной здания, размеров портика, и даже расстояния между колоннами. В дальнейшем, этот принцип был унаследован архитектурой неоклассицизма.

Искусство: Тайная вечеря

Для художников композиция – основа основ. Леонардо да Винчи, как и многие другие художники, руководствовался принципом Золотого сечения: в Тайной Вечере, к примеру, фигуры учеников расположены в нижних двух третях (большее из двух частей Золотого сечения), а Иисус помещен строго по центру между двумя прямоугольниками.

Веб-дизайн: редизайн Twitter в 2010

Креативный директор Twitter Дуг Боуман (Doug Bowman) опубликовал скриншот в своем аккаунте Flickr, объясняя использование принципа Золотого сечения для редизайна 2010 года. «Все, кто интересуется #NewTwitter пропорциями – знайте, все сделано не просто так», сказал он.

Apple iCloud

Иконка сервиса iCloud тоже совсем не случайный набросок. Как объяснил Такамаса Мацумото в своем блоге (оригинальная японская версия ) все построено на математике Золотого сечения, анатомию которого можно увидеть на рисунке справа.

Как построить Золотое сечение?

Построение происходит довольно просто, и начинается с основного квадрата:

Нарисуйте квадрат. Это сформирует длину “короткой стороны” прямоугольника.

Разделите квадрат пополам вертикальной линией так, чтобы получились два прямоугольника.

В одном прямоугольнике нарисуйте линию, объединив противоположные углы.

Разверните эту линию горизонтально так, как это показано на рисунке.

Создайте еще один прямоугольник, используя горизонтальную линию, которую вы рисовали в предыдущих шагах как основу. Готово!

«Золотые» инструменты

Если чертить и вымерять не ваше любимое занятие, предоставьте всю «черную работу» инструментам, которые разработаны специально для этого. С помощью представленных ниже 4-х редакторов вы легко найдете Золотое сечение!

Приложение GoldenRATIO помогает разрабатывать веб-сайты, интерфейсы и макеты в соответствии с Золотым Сечением. Оно доступно в Mac App Store за $ 2,99, и имеет встроенный калькулятор с визуальной обратной связью, и удобную функцию «Избранное», в которой хранятся настройки для повторяющихся задач. Совместимо с Adobe Photoshop.

Этот калькулятор, который поможет вам создать идеальную типографику для сайта в соответствии с принципами Золотой пропорции. Просто введите размер шрифта, ширину содержимого в поле на сайте, и нажмите «Set my type»!

Это простое и бесплатное приложение для Mac и PC. Просто введите число, и он рассчитает для него пропорцию в соответствии с правилом Золотого сечения.

Удобная программа, которая избавит вас от необходимости расчетов и рисования сеток. С ней найти идеальные пропорции проще простого! Работает со всеми графическими редакторами, в том числе и Photoshop. Несмотря на то, что инструмент платный – 49$, есть возможность протестировать пробную версию в течение 30 дней.

Золотое сечение просто, как все гениальное. Представьте отрезок АВ, разделенный точкой С. Вам нужно лишь поставить точку С так, чтобы можно было составить равенство СВ/АС = АС/АВ = 0,618. То есть число, полученное при делении самого маленького отрезка СВ на длину среднего отрезка АС должно совпадать с числом, полученным при делении среднего отрезка АС на длину большого отрезка АВ. Числом этим будет 0,618. Это и есть золотая, или, как говорили в древности, божественная пропорция — ф (греческая «фи»). Индекс совершенства.

Трудно сказать, когда именно и кем было замечено, что следование этой пропорции дает ощущение гармонии. Но как только люди стали что-то создавать собственными руками, то интуитивно старались соблюсти это соотношение. Здания, возведенные с учетом ф , всегда выглядели более гармонично по сравнению с теми, в которых пропорции золотого сечения нарушены. Это неоднократно проверялось всевозможными тестами.

В геометрии существуют два объекта, неразрывно связанных с ф : правильный пятиугольник (пентаграмма) и логарифмическая спираль. В пентаграмме каждая линия, пересекаясь с соседней, делит ее в золотой пропорции, а в логарифмической спирали диаметры соседних витков относятся друг к другу так же, как отрезки АС и СВ на нашей прямой АВ. Но ф работает не только в геометрии. Считается, что части любой системы (например, протоны и нейтроны в ядре атома) могут находиться между собой в пропорции, соответствующей золотому числу. В этом случае, полагают ученые, система оказывается оптимальной. Правда, для научного подтверждения гипотезы требуется еще не один десяток лет исследований. Там, где ф нельзя измерить инструментальным методом, применяют так называемый числовой ряд Фибоначчи, в котором каждое последующее число является суммой двух предыдущих: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 и т. д. Особенность этого ряда заключается в том, что при делении любого его числа на следующее за ним получается результат, максимально приближенный к 0,618. Например, возьмем числа 2,3 и 5. 2/3 = 0,666, а 3/5 = 0,6. По сути, здесь присутствует то же соотношение, что и между составляющими нашего отрезка АВ. Таким образом, если измерительные характеристик какого-то объекта или явления можно вписать в числовой ряд Фибоначчи, это означает, что в их строении соблюдена золотая пропорция. А таких объектов и систем бессчетное множество, и современная наука открывает все новые и новые. Так что вопрос, не является ли ф действительно божественной пропорцией, на которой держится наш мир, вовсе не риторический.

Золотая пропорция в природе

Золотая пропорция соблюдена и в природе, причем уже на самых простейших уровнях. Взять например, белковые молекулы, из которых состоят ткани всех живых организмов. Отличаются молекулы друг от друга по массе, которая зависит от числа входящих в них аминокислот. Не так давно было установлено, что наиболее распространенными являются белки с массами 31; 81,2; 140,6; 231; 319 тыс. единиц. Ученые отмечают, что этот ряд почти соответствует ряду Фибоначчи — 3, 8,13, 21, 34 (здесь ученые не учитывают десятичную разницу этих рядов).

Наверняка при дальнейших исследованиях будет найден белок, масса которого будет коррелировать с 5. Эту уверенность дает даже устройство простейших — многие вирус имеют пентагональную структуру. Стремятся к ф и пропорции химических элементов. Ближе всего к ней плутоний: соотношение числа протонов в его ядре с нейтронами равно 0,627. Дальше всего — водород. В свою очередь, число атомов в химических соединениях удивительно часто кратно числам ряда Фибоначчи. Особенно это касается окислов урана и соединений металлов.

Если вы разрежете нераскрывшуюся почку дерева, то обнаружите там две спирали, направленные в разные стороны. Это зачатки листьев. Соотношение количества витков между этими двумя спиралями всегда будет 2/3, или 3/5, или 5/8 и т. д. То есть опять по Фибоначчи. Кстати, ту же самую закономерность мы видим и в расположении семечек подсолнуха, и в строении шишек хвойных деревьев. Но вернемся к листьям. Когда они раскроются, то не потеряют своей связи с ф , поскольку будут располагаться на стебле или ветке по логарифмической спирали. Но и это еще не все. Существует понятие «угла расхождения листьев» — это угол, под которым находятся листья относительно друг друга. Вычислить этот угол не составляет большого труда. Представьте, что в стебель вписана призма с пятиугольным основанием. Теперь пустите по стеблю спираль. Точки, в которых спираль будет касаться граней призмы, соответствуют тем точкам, откуда растут листья. А теперь от первого листа проведите прямую линию вверх и посмотрите, сколько листьев будет лежать на этой прямой. Их число в биологии обозначается буквой n (в нашем случае это два листа). Теперь посчитайте количество витков, описываемых спиралью вокруг стебля. Полученное число называется листовым циклом и обозначается буквой p (в нашем случае оно равно 5). Теперь умножаем максимальный угол — 360 градусов на 2 (n) и делим на 5 (p). Получаем искомый угол расхождения листьев — 144 градуса. Соотношение n и p пиру каждого растения или дерева свое, но все они не выходят из ряда Фибоначчи: 1/2; 2/5; 3/8; 5/13 и т. д. Биологи установили, что углы, образованные по этим пропорциям, в бесконечности стремятся к 137 градусам — оптимальному углу расхождения, при котором равномерно распределяется солнечный свет по веткам и листьям. Да и в самих листьях мы можем заметить соблюдение золотой пропорции, как, впрочем, и в цветках — легче всего ее заметить в тех, что имеют форму пентаграммы.

ф не обошла и животный мир. По мнению ученых, присутствие золотой пропорции в строении скелета живых организмов решает очень важную задачу. Так достигается максимально возможная прочность остова при минимально возможном весе, что, в свою очередь, позволяет рационально распределить материю по частям тела. Это касается почти всех представителей фауны. Так, морские звезды — совершенные пятиугольники, а раковины многих моллюсков представляют собой логарифмические спирали. Соотношение длины хвоста стрекозы к ее корпусу тоже равно ф . Да и комар не прост: у него три пары ног, брюшко делится на восемь сегментов, а на голове пять усиков-антенн — все тот же ряд Фибоначчи. Число позвонков у многих животных, например у кита или лошади, равно 55. Число ребер — 13, а количество костей в конечностях — 89. А конечности сами имеют трехчастную структуру. Общее же число костей этих животных, считая зубы (которых, 21 пара) и косточки слухового аппарата,- 233 (число Фибоначчи). Чему тут удивляться, когда даже яйцо, из которого, как многие народы считают, все и произошло, можно вписать в прямоугольник золотого сечения — длина такого прямоугольника в 1,618 раза превышает его ширину.

©При частичном или полном использовании данной статьи - активная гиперссылка ссылка на познавательный журнал сайт ОБЯЗАТЕЛЬНА

18.04.2011 А. Ф. Афанасьев Обновлено 16.06.12

Размеры и пропорции - одна из главных задач в поисках художественного образа любого произведения пластического искусства. Понятно, что вопрос о размерах решается с учетом помещения, где оно будет находиться, и окружающих его предметов.

Говоря о пропорциях (соотношении размерных величин), мы учитываем их в формате плоского изображения (картина, маркетри), в соотношениях габаритных размеров (длина, высота, ширина) объемного предмета, в соотношении двух различных по высоте или длине предметов одного ансамбля, в соотношении размеров двух явно выделяющихся частей одного и того же предмета и т. д.

В классике изобразительного искусства на протяжении многих веков прослеживается прием построения пропорций, называемый золотым сечением, или золотым числом (этот термин введен Леонардо да Винчи). Принцип золотого сечения, или динамичной симметрии, заключается в том, что «отношение между двумя частями единого целого равно отношению ее большей части к целому» (или соответственно целого к большей части). Математически это

число выражается как - 1 ± 2 ?5 - что дает 1,6180339... или 0,6180339... В искусстве за золотое число принимается 1,62, т. е. приближенное выражение отношения большей величины в пропорции к ее меньшей величине.
От приближенного к более точному это отношение может быть выражено: и т. д., где: 5+3=8, 8+5=13 и т. д. Или: 2,2:3,3:5,5:8,8 и т. д., где 2,2+3,3-5,5 и т. д.

Графически золотое сечение можно выразить соотношением отрезков, получающихся различными построениями. Удобнее, на наш взгляд, построение, показанное на рис. 169: если к диагонали полуквадрата добавить его короткую сторону, то получится величина в отношении золотого числа к его длинной стороне.

Рис. 169. Геометрическое построение прямоугольника в золотом сечении 1,62: 1. Золотое число 1,62 в отношении отрезков (а и Ь)

Рис. 170. Графическое построение функции золотой пропорции 1,12: 1


Пропорция двух величин золотого сечения

создает зрительное ощущение гармонии и равновесия. Есть и другое гармоничное соотношение двух смежных величин, выражаемое числом 1,12. Оно является функцией золотого числа: если взять разность двух величин золотого сечения, разделить ее также в золотой пропорции и каждую долю добавить к меньшей величине исходного золотого сечения, то получится соотношение 1,12 (рис. 170). В таком отношении, например, проводится средний элемент (полочка) в буквах Н, Р, Я и т. д. в некоторых шрифтах, берутся пропорции высоты и ширины для широких букв, также встречается это отношение и в природе.

Золотое число наблюдается в пропорциях гармонично развитого человека (рис. 171): длина головы делит в золотом сечении расстояние от талии до макушки; коленная чашечка также делит расстояние от талии до подошвы ног; кончик среднего пальца вытянутой вниз руки делит в золотой пропорции весь рост человека; отношение фалангов пальцев - тоже золотое число. Это же явление наблюдается и в иных конструкциях природы: в спиралях моллюсков, в венчиках цветков и др.

Рис. 172. Золотые пропорции резного листа герани (пеларгонии). Построение: 1) С помощью масштабного графика (см. рис. 171) строим? ABC, Рис. 173. Пятилепестковый и трехлепестковый лист винограда. Отношение длины к ширине составляет 1,12. Золотой пропорцией выражается

На рис. 172 и 173 показано построение рисунка листа герани (пеларгонии) и листа винограда в пропорциях золотых чисел 1,62 и 1,12. В листе герани базой построения являются два треугольника: ABC и CEF, где отношение высоты и основания каждого из них выражается числами 0,62 и 1,62, а расстояния между тремя парами наиболее удаленных точек листа равны: AB=CE=SF. Построение указано на чертеже. Конструкция такого листа является типичной для герани, имеющей подобные резные листья.

Обобщенный лист платана (рис. 173) имеет пропорции так же, как и лист винограда, в отношении 1,12, но большую долю у листа винограда составляет его длина, а у листа платана - его ширина. Лист платана имеет три пропорциональных размера в отношении 1,62. Такое соответствие в архитектуре называется триадой (для четырех пропорций - тетрада и далее: пектада, гексода).

На рис. 174 показан способ построения в пропорциях золотого сечения листа клена. При соотношении ширины к длине в 1,12 он имеет несколько пропорций с числом 1,62. За основу построения взяты две трапеции, у которых отношение высоты и длины основания выражается золотым числом. Построение показано на чертеже, также приведены варианты формы листа клена.

В произведениях изобразительного искусства художник или скульптор осознанно или подсознательно, доверяя своему тренированному глазу, часто применяет соотношение размеров в золотой пропорции. Так, работая над копией с головы Христа (по Микеланджело), автор данной книги заметил, что смежные завитки в прядях волос по своим размерам отражают отношение золотого сечения, а по форме - спираль Архимеда, эвольвенту. Читатель сам может убедиться, что в ряде картин художников-классиков центральная фигура расположена от сторон формата на расстояниях, образующих пропорцию золотого сечения (например, размещение головы как по вертикали, так и по горизонтали в портрете М. И. Лопухиной В. Боровиковского; положение по вертикали центра головы в портрете А. С. Пушкина кисти О. Кипренского и др.). То же самое иногда можно видеть и с размещением линии горизонта (Ф. Васильев: «Мокрый луг», И. Левитан: «Март», «Вечерний звон»).

Конечно, указанное правило не всегда есть решение проблемы композиции, и оно не должно подменять в творчестве художника интуицию ритма и пропорций. Известно, например, что некоторые художники применяли для своих композиций отношения «музыкальных чисел»: терции, кварты, квинты (2:3, 3:4 и др.). Искусствоведы не без основания отмечают, что конструкцию любого классического памятника архитектуры или скульптуры при желании можно подогнать под какое угодно отношение чисел. Нашей же задачей в данном случае и особенно задачей начинающего художника или резчика по дереву является научиться строить обдуманную композицию своего произведения не по случайным соотношениям, а по гармоничным пропорциям, проверенным практикой. Эти гармоничные пропорции надо уметь выявить и подчеркнуть конструкцией и формой изделия.

Рассмотрим в качестве примера поиска гармоничной пропорции определение размеров рамки к работе, показанной на рис. 175. Формат помещаемого в нее изображения задан в пропорции золотого сечения. Внешние размеры рамки при одинаковой ширине ее сторон золотой пропорции не дадут. Поэтому отношение длины и ширины ее (ЗЗ0X220) принято несколько меньше золотого числа, т. е. равным 1,5, а ширина поперечных звеньев соответственно увеличена по сравнению с боковыми сторонами. Это позволило выйти на размеры рамки в свету (для картины), дающие пропорции золотого сечения. Отношение же ширины нижнего звена рамки к ширине его верхнего звена подогнано к другому золотому числу, т. е. к 1,12. Также отношение ширины нижнего звена к ширине бокового (94:63) близко к 1,5 (на рисунке - вариант слева).

Теперь сделаем эксперимент: увеличим длинную сторону рамки до 366 мм за счет ширины нижнего звена (она будет 130 мм) (на рисунке - вариант справа), чем приблизим не только отношение но и к золотому
числу 1,62 вместо 1,12. В результате получилась новая композиция, которая может быть применена в каком-либо ином изделии, но для рамки возникает желание сделать ее короче. Закройте нижнюю часть ее линейкой настолько, чтобы глаз «принял» получившуюся пропорцию, и мы получим ее длину 330 мм, т. е. подойдем к исходному варианту.

Так, анализируя различные варианты (могут быть и другие кроме двух разобранных), мастер останавливается на единственно возможном с его точки зрения решении.

Применение принципа золотого сечения в поисках нужной композиции лучше делать, используя несложный прибор, принципиальная схема конструкции которого показана на рис. 176. Две линейки этого прибора могут, вращаясь вокруг шарнира В, образовывать произвольный угол. Если при любом растворе угла разделить точкой К расстояние АС в золотом сечении и смонтировать еще две линейки: КМ\\ВС и КЕ\\АВ с шарнирами в точках К, Е и М, то при любом растворе АС это расстояние будет делиться точкой К в отношении золотого сечения.

Золотое сечение – математика

Человек различает окружающие его предметы по форме. Интерес к форме какого-либо предмета может быть продиктован жизненной необходимостью, а может быть вызван красотой формы. Форма, в основе построения которой лежат сочетание симметрии и золотого сечения, способствует наилучшему зрительному восприятию и появлению ощущения красоты и гармонии. Целое всегда состоит из частей, части разной величины находятся в определенном отношении друг к другу и к целому. Принцип золотого сечения – высшее проявление структурного и функционального совершенства целого и его частей в искусстве, науке, технике и природе.

Золотое сечение – гармоническая пропорция

В математике пропорцией (лат. proportio) называют равенство двух отношений:a: b = c: d.
Отрезок прямой АВ можно разделить на две части следующими способами:
на две равные части – АВ: АС = АВ: ВС;
на две неравные части в любом отношении (такие части пропорции не образуют);
таким образом, когда АВ: АС = АС: ВС.
Последнее и есть золотое деление или деление отрезка в крайнем и среднем отношении.
Золотое сечение – это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как сама большая часть относится к меньшей; или другими словами, меньший отрезок так относится к большему, как больший ко всему

a: b = b: c или с: b = b: а.

Рис. 1. Геометрическое изображение золотой пропорции

Практическое знакомство с золотым сечением начинают с деления отрезка прямой в золотой пропорции с помощью циркуля и линейки.

Рис. 2. Деление отрезка прямой по золотому сечению. BC = 1/2 AB; CD = BC

Из точки В восставляется перпендикуляр, равный половине АВ. Полученная точка С соединяется линией с точкой А. На полученной линии откладывается отрезок ВС, заканчивающийся точкой D. Отрезок AD переносится на прямую АВ. Полученная при этом точка Е делит отрезок АВ в соотношении золотой пропорции.

Отрезки золотой пропорции выражаются бесконечной иррациональной дробью AE = 0,618…, если АВ принять за единицу, ВЕ = 0,382… Для практических целей часто используют приближенные значения 0,62 и 0,38. Если отрезок АВ принять за 100 частей, то большая часть отрезка равна 62, а меньшая – 38 частям.

Свойства золотого сечения описываются уравнением:
x2 – x – 1 = 0.

Решение этого уравнения:

Свойства золотого сечения создали вокруг этого числа романтический ореол таинственности и чуть ли не мистического поклонения.

Второе золотое сечение

Болгарский журнал «Отечество» (№10, 1983 г.) опубликовал статью Цветана Цекова-Карандаша «О втором золотом сечении», которое вытекает из основного сечения и дает другое отношение 44: 56.
Такая пропорция обнаружена в архитектуре, а также имеет место при построении композиций изображений удлиненного горизонтального формата.

Деление осуществляется следующим образом. Отрезок АВ делится в пропорции золотого сечения. Из точки С восставляется перпендикуляр СD. Радиусом АВ находится точка D, которая соединяется линией с точкой А. Прямой угол АСD делится пополам. Из точки С проводится линия до пересечения с линией AD. Точка Еделит отрезок AD в отношении 56: 44.

Рис. 3. Построение второго золотого сечения

Рис. 4. Деление прямоугольника линией второго золотого сечения

На рисунке показано положение линии второго золотого сечения. Она находится посередине между линией золотого сечения и средней линией прямоугольника.

Золотой треугольник

Для нахождения отрезков золотой пропорции восходящего и нисходящего рядов можно пользоваться пентаграммой.

Рис. 5. Построение правильного пятиугольника и пентаграммы

Для построения пентаграммы необходимо построить правильный пятиугольник. Способ его построения разработал немецкий живописец и график Альбрехт Дюрер (1471…1528). Пусть O – центр окружности, A – точка на окружности и Е – середина отрезка ОА. Перпендикуляр к радиусу ОА, восставленный в точке О, пересекается с окружностью в точке D. Пользуясь циркулем, отложим на диаметре отрезок CE = ED. Длина стороны вписанного в окружность правильного пятиугольника равна DC. Откладываем на окружности отрезки DC и получим пять точек для начертания правильного пятиугольника. Соединяем углы пятиугольника через один диагоналями и получаем пентаграмму. Все диагонали пятиугольника делят друг друга на отрезки, связанные между собой золотой пропорцией.
Каждый конец пятиугольной звезды представляет собой золотой треугольник. Его стороны образуют угол 36° при вершине, а основание, отложенное на боковую сторону, делит ее в пропорции золотого сечения.

Проводим прямую АВ. От точки Аоткладываем на ней три раза отрезок Опроизвольной величины, через полученную точку Р проводим перпендикуляр к линии АВ, на перпендикуляре вправо и влево от точки Р откладываем отрезки О. Полученные точки d и d1 соединяем прямыми с точкой А. Отрезок dd1 откладываем на линию Ad1, получая точку С. Она разделила линию Ad1 в пропорции золотого сечения. Линиями Ad1 и dd1 пользуются для построения «золотого» прямоугольника.

Рис. 6. Построение золотого треугольника

История золотого сечения

Принято считать, что понятие о золотом делении ввел в научный обиход Пифагор, древнегреческий философ и математик (VI в. до н.э.). Есть предположение, что Пифагор свое знание золотого деления позаимствовал у египтян и вавилонян. И действительно, пропорции пирамиды Хеопса, храмов, барельефов, предметов быта и украшений из гробницы Тутанхамона свидетельствуют, что египетские мастера пользовались соотношениями золотого деления при их создании. Французский архитектор Ле Корбюзье нашел, что в рельефе из храма фараона Сети I в Абидосе и в рельефе, изображающем фараона Рамзеса, пропорции фигур соответствуют величинам золотого деления. Зодчий Хесира, изображенный на рельефе деревянной доски из гробницы его имени, держит в руках измерительные инструменты, в которых зафиксированы пропорции золотого деления.
Греки были искусными геометрами. Даже арифметике обучали своих детей при помощи геометрических фигур. Квадрат Пифагора и диагональ этого квадрата были основанием для построения динамических прямоугольников.

Рис. 7. Динамические прямоугольники

Платон (427…347 гг. до н.э.) также знал о золотом делении. Его диалог «Тимей» посвящен математическим и эстетическим воззрениям школы Пифагора и, в частности, вопросам золотого деления.
В фасаде древнегреческого храма Парфенона присутствуют золотые пропорции. При его раскопках обнаружены циркули, которыми пользовались архитекторы и скульпторы античного мира. В Помпейском циркуле (музей в Неаполе) также заложены пропорции золотого деления.

Рис. 8. Античный циркуль золотого сечения

В дошедшей до нас античной литературе золотое деление впервые упоминается в «Началах» Евклида. Во 2-й книге «Начал» дается геометрическое построение золотого деления После Евклида исследованием золотого деления занимались Гипсикл (II в. до н.э.), Папп (III в. н.э.) и др. В средневековой Европе с золотым делением познакомились по арабским переводам «Начал» Евклида. Переводчик Дж. Кампано из Наварры (III в.) сделал к переводу комментарии. Секреты золотого деления ревностно оберегались, хранились в строгой тайне. Они были известны только посвященным.
В эпоху Возрождения усиливается интерес к золотому делению среди ученых и художников в связи с его применением как в геометрии, так и в искусстве, особенно в архитектуре Леонардо да Винчи, художник и ученый, видел, что у итальянских художников эмпирический опыт большой, а знаний мало. Он задумал и начал писать книгу по геометрии, но в это время появилась книга монаха Луки Пачоли, и Леонардо оставил свою затею. По мнению современников и историков науки, Лука Пачоли был настоящим светилом, величайшим математиком Италии в период между Фибоначчи и Галилеем. Лука Пачоли был учеником художника Пьеро делла Франчески, написавшего две книги, одна из которых называлась «О перспективе в живописи». Его считают творцом начертательной геометрии.
Лука Пачоли прекрасно понимал значение науки для искусства. В 1496 г по приглашению герцога Моро он приезжает в Милан, где читает лекции по математике. В Милане при дворе Моро в то время работал и Леонардо да Винчи. В 1509 г. в Венеции была издана книга Луки Пачоли «Божественная пропорция» с блестяще выполненными иллюстрациями, ввиду чего полагают, что их сделал Леонардо да Винчи. Книга была восторженным гимном золотой пропорции. Среди многих достоинств золотой пропорции монах Лука Пачоли не преминул назвать и ее «божественную суть» как выражение божественного триединства бог сын, бог отец и бог дух святой (подразумевалось, что малый отрезок есть олицетворение бога сына, больший отрезок – бога отца, а весь отрезок – бога духа святого).
Леонардо да Винчи также много внимания уделял изучению золотого деления. Он производил сечения стереометрического тела, образованного правильными пятиугольниками, и каждый раз получал прямоугольники с отношениями сторон в золотом делении. Поэтому он дал этому делению название золотое сечение. Так оно и держится до сих пор как самое популярное.
В то же время на севере Европы, в Германии, над теми же проблемами трудился Альбрехт Дюрер. Он делает наброски введения к первому варианту трактата о пропорциях. Дюрер пишет. «Необходимо, чтобы тот, кто что-либо умеет, обучил этому других, которые в этом нуждаются. Это я и вознамерился сделать».
Судя по одному из писем Дюрера, он встречался с Лукой Пачоли во время пребывания в Италии. Альбрехт Дюрер подробно разрабатывает теорию пропорций человеческого тела. Важное место в своей системе соотношений Дюрер отводил золотому сечению. Рост человека делится в золотых пропорциях линией пояса, а также линией, проведенной через кончики средних пальцев опущенных рук, нижняя часть лица – ртом и т.д. Известен пропорциональный циркуль Дюрера.
Великий астроном XVI в. Иоган Кеплер назвал золотое сечение одним из сокровищ геометрии. Он первый обращает внимание на значение золотой пропорции для ботаники (рост растений и их строение).
Кеплер называл золотую пропорцию продолжающей саму себя «Устроена она так, – писал он, – что два младших члена этой нескончаемой пропорции в сумме дают третий член, а любые два последних члена, если их сложить, дают следующий член, причем та же пропорция сохраняется до бесконечности».
Построение ряда отрезков золотой пропорции можно производить как в сторону увеличения (возрастающий ряд), так и в сторону уменьшения (нисходящий ряд).
Если на прямой произвольной длины, отложить отрезок m, рядом откладываем отрезок M. На основании этих двух отрезков выстраиваем шкалу отрезков золотой пропорции восходящего и нисходящего рядов

Рис. 9. Построение шкалы отрезков золотой пропорции

В последующие века правило золотой пропорции превратилось в академический канон и, когда со временем в искусстве началась борьба с академической рутиной, в пылу борьбы «вместе с водой выплеснули и ребенка». Вновь «открыто» золотое сечение было в середине XIX в. В 1855 г. немецкий исследователь золотого сечения профессор Цейзинг опубликовал свой труд «Эстетические исследования». С Цейзингом произошло именно то, что и должно было неминуемо произойти с исследователем, который рассматривает явление как таковое, без связи с другими явлениями. Он абсолютизировал пропорцию золотого сечения, объявив ее универсальной для всех явлений природы и искусства. У Цейзинга были многочисленные последователи, но были и противники, которые объявили его учение о пропорциях «математической эстетикой».

Рис. 10. Золотые пропорции в частях тела человека

Цейзинг проделал колоссальную работу. Он измерил около двух тысяч человеческих тел и пришел к выводу, что золотое сечение выражает средний статистический закон. Деление тела точкой пупа – важнейший показатель золотого сечения. Пропорции мужского тела колеблются в пределах среднего отношения 13: 8 = 1,625 и несколько ближе подходят к золотому сечению, чем пропорции женского тела, в отношении которого среднее значение пропорции выражается в соотношении 8: 5 = 1,6. У новорожденного пропорция составляет отношение 1: 1, к 13 годам она равна 1,6, а к 21 году равняется мужской. Пропорции золотого сечения проявляются и в отношении других частей тела – длина плеча, предплечья и кисти, кисти и пальцев и т.д.


Рис. 11. Золотые пропорции в фигуре человека

Справедливость своей теории Цейзинг проверял на греческих статуях. Наиболее подробно он разработал пропорции Аполлона Бельведерского. Подверглись исследованию греческие вазы, архитектурные сооружения различных эпох, растения, животные, птичьи яйца, музыкальные тона, стихотворные размеры. Цейзинг дал определение золотому сечению, показал, как оно выражается в отрезках прямой и в цифрах. Когда цифры, выражающие длины отрезков, были получены, Цейзинг увидел, что они составляют ряд Фибоначчи, который можно продолжать до бесконечности в одну и в другую сторону. Следующая его книга имела название «Золотое деление как основной морфологический закон в природе и искусстве». В 1876 г. в России была издана небольшая книжка, почти брошюра, с изложением этого труда Цейзинга. Автор укрылся под инициалами Ю.Ф.В. В этом издании не упомянуто ни одно произведение живописи.

В конце XIX – начале XX вв. появилось немало чисто формалистических теории о применении золотого сечения в произведениях искусства и архитектуры. С развитием дизайна и технической эстетики действие закона золотого сечения распространилось на конструирование машин, мебели и т.д.

Ряд Фибоначчи

С историей золотого сечения косвенным образом связано имя итальянского математика монаха Леонардо из Пизы, более известного под именем Фибоначчи (сын Боначчи). Он много путешествовал по Востоку, познакомил Европу с индийскими (арабскими) цифрами. В 1202 г вышел в свет его математический труд «Книга об абаке» (счетной доске), в котором были собраны все известные на то время задачи. Одна из задач гласила «Сколько пар кроликов в один год от одной пары родится». Размышляя на эту тему, Фибоначчи выстроил такой ряд цифр:

Ряд чисел 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 и т.д. известен как ряд Фибоначчи. Особенность последовательности чисел состоит в том, что каждый ее член, начиная с третьего, равен сумме двух предыдущих 2 + 3 = 5; 3 + 5 = 8; 5 + 8 = 13, 8 + 13 = 21; 13 + 21 = 34 и т.д., а отношение смежных чисел ряда приближается к отношению золотого деления. Так, 21: 34 = 0,617, а 34: 55 = 0,618. Это отношение обозначается символом Ф. Только это отношение – 0,618: 0,382 – дает непрерывное деление отрезка прямой в золотой пропорции, увеличение его или уменьшение до бесконечности, когда меньший отрезок так относится к большему, как больший ко всему.

Фибоначчи так же занимался решением практических нужд торговли: с помощью какого наименьшего количества гирь можно взвесить товар? Фибоначчи доказывает, что оптимальной является такая система гирь: 1, 2, 4, 8, 16…

Обобщенное золотое сечение

Ряд Фибоначчи мог бы остаться только математическим казусом, если бы не то обстоятельство, что все исследователи золотого деления в растительном и в животном мире, не говоря уже об искусстве, неизменно приходили к этому ряду как арифметическому выражению закона золотого деления.

Ученые продолжали активно развивать теорию чисел Фибоначчи и золотого сечения. Ю. Матиясевич с использованием чисел Фибоначчи решает 10-ю проблему Гильберта. Возникают изящные методы решения ряда кибернетических задач (теории поиска, игр, программирования) с использованием чисел Фибоначчи и золотого сечения. В США создается даже Математическая Фибоначчи-ассоциация, которая с 1963 года выпускает специальный журнал.

Одним из достижений в этой области является открытие обобщенных чисел Фибоначчи и обобщенных золотых сечений.

Ряд Фибоначчи (1, 1, 2, 3, 5, 8) и открытый им же «двоичный» ряд гирь 1, 2, 4, 8, 16… на первый взгляд совершенно разные. Но алгоритмы их построения весьма похожи друг на друга: в первом случае каждое число есть сумма предыдущего числа с самим собой 2 = 1 + 1; 4 = 2 + 2…, во втором – это сумма двух предыдущх чисел 2 = 1 + 1, 3 = 2 + 1, 5 = 3 + 2…. Нельзя ли отыскать общую математическую формулу, из которой получаются и «двоичный» ряд, и ряд Фибоначчи? А может быть, эта формула даст нам новые числовые множества, обладающие какими-то новыми уникальными свойствами?

Действительно, зададимся числовым параметром S , который может принимать любые значения: 0, 1, 2, 3, 4, 5… Рассмотрим числовой ряд, S + 1 первых членов которого – единицы, а каждый из последующих равен сумме двух членов предыдущего и отстоящего от предыдущего на S шагов. Если n -й член этого ряда мы обозначим через φ S (n ), то получим общую формулу φ S (n ) = φ S (n – 1) + φ S (n S – 1).

Очевидно, что при S = 0 из этой формулы мы получим «двоичный» ряд, при S = 1 – ряд Фибоначчи, при S = 2, 3, 4. новые ряды чисел, которые получили названиеS -чисел Фибоначчи.

В общем виде золотая S -пропорция есть положительный корень уравнения золотого S -сечения x S+1 – x S – 1 = 0.

Нетрудно показать, что при S = 0 получается деление отрезка пополам, а при S = 1 –знакомое классическое золотое сечение.

Отношения соседних S-чисел Фибоначчи с абсолютной математической точностью совпадают в пределе с золотыми S-пропорциями! Математики в таких случаях говорят, что золотые S-сечения являются числовыми инвариантами S-чисел Фибоначчи.

Факты, подтверждающие существование золотых S-сечений в природе, приводит белорусский ученый Э.М. Сороко в книге «Структурная гармония систем» (Минск, «Наука и техника», 1984). Оказывается, например, что хорошо изученные двойные сплавы обладают особыми, ярко выраженными функциональными свойствами (устойчивы в термическом отношении, тверды, износостойки, устойчивы к окислению и т. п) только в том случае, если удельные веса исходных компонентов связаны друг с другом одной из золотыхS-пропорций. Это позволило автору выдвинуть гипотезe о том, что золотые S-сечения есть числовые инварианты самоорганизующихся систем. Будучи подтвержденной экспериментально, эта гипотеза может иметь фундаментальное значение для развития синергетики – новой области науки, изучающей процессы в самоорганизующихся системах.

С помощью кодов золотой S-пропорции можно выразить любое действительное число в виде суммы степеней золотых S-пропорций с целыми коэффициентами.

Принципиальное отличие такого способа кодирования чисел заключается в том, что основания новых кодов, представляющие собой золотые S-пропорции, при S> 0 оказываются иррациональными числами. Таким образом, новые системы счисления с иррациональными основаниями как бы ставят «с головы на ноги» исторически сложившуюся иерархию отношений между числами рациональными и иррациональными. Дело в том, что сначала были «открыты» числа натуральные; затем их отношения – числа рациональные. И лишь позже – после открытия пифагорийцами несоизмеримых отрезков – на свет появились иррациональные числа. Скажем, в десятичной, пятеричной, двоичной и других классических позиционных системах счисления в качестве своеобразной первоосновы были выбраны натуральные числа – 10, 5, 2, – из которых уже по определенным правилам конструировались все другие натуральные, а также рациональные и иррациональные числа.

Своего рода альтернативой существующим способам счисления выступает новая, иррациональная система, в качестве первоосновы, начала счисления которой выбрано иррациональное число (являющееся, напомним, корнем уравнения золотого сечения); через него уже выражаются другие действительные числа.

В такой системе счисления любое натуральное число всегда представимо в виде конечной – а не бесконечной, как думали ранее! – суммы степеней любой из золотых S-пропорций. Это одна из причин, почему «иррациональная» арифметика, обладая удивительной математической простотой и изяществом, как бы вобрала в себя лучшие качества классической двоичной и «Фибоначчиевой» арифметик.

Принципы формообразования в природе

Все, что приобретало какую-то форму, образовывалось, росло, стремилось занять место в пространстве и сохранить себя. Это стремление находит осуществление в основном в двух вариантах – рост вверх или расстилание по поверхности земли и закручивание по спирали.

Раковина закручена по спирали. Если ее развернуть, то получается длина, немного уступающая длине змеи. Небольшая десятисантиметровая раковина имеет спираль длиной 35 см. Спирали очень распространены в природе. Представление о золотом сечении будет неполным, если не сказать о спирали.


Рис. 12. Спираль Архимеда

Форма спирально завитой раковины привлекла внимание Архимеда. Он изучал ее и вывел уравнение спирали. Спираль, вычерченная по этому уравнению, называется его именем. Увеличение ее шага всегда равномерно. В настоящее время спираль Архимеда широко применяется в технике.

Еще Гете подчеркивал тенденцию природы к спиральности. Винтообразное и спиралевидное расположение листьев на ветках деревьев подметили давно. Спираль увидели в расположении семян подсолнечника, в шишках сосны, ананасах, кактусах и т.д. Совместная работа ботаников и математиков пролила свет на эти удивительные явления природы. Выяснилось, что в расположении листьев на ветке (филотаксис), семян подсолнечника, шишек сосны проявляет себя ряд Фибоначчи, а стало быть, проявляет себя закон золотого сечения. Паук плетет паутину спиралеобразно. Спиралью закручивается ураган. Испуганное стадо северных оленей разбегается по спирали. Молекула ДНК закручена двойной спиралью. Гете называл спираль «кривой жизни».

Среди придорожных трав растет ничем не примечательное растение – цикорий. Приглядимся к нему внимательно. От основного стебля образовался отросток. Тут же расположился первый листок.


Рис. 13. Цикорий

Отросток делает сильный выброс в пространство, останавливается, выпускает листок, но уже короче первого, снова делает выброс в пространство, но уже меньшей силы, выпускает листок еще меньшего размера и снова выброс. Если первый выброс принять за 100 единиц, то второй равен 62 единицам, третий – 38, четвертый – 24 и т.д. Длина лепестков тоже подчинена золотой пропорции. В росте, завоевании пространства растение сохраняло определенные пропорции. Импульсы его роста постепенно уменьшались в пропорции золотого сечения.

Рис. 15. Яйцо птицы

Великий Гете, поэт, естествоиспытатель и художник (он рисовал и писал акварелью), мечтал о создании единого учения о форме, образовании и преобразовании органических тел. Это он ввел в научный обиход термин морфология.

Пьер Кюри в начале нашего столетия сформулировал ряд глубоких идей симметрии. Он утверждал, что нельзя рассматривать симметрию какого-либо тела, не учитывая симметрию окружающей среды.

Закономерности «золотой» симметрии проявляются в энергетических переходах элементарных частиц, в строении некоторых химических соединений, в планетарных и космических системах, в генных структурах живых организмов. Эти закономерности, как указано выше, есть в строении отдельных органов человека и тела в целом, а также проявляются в биоритмах и функционировании головного мозга и зрительного восприятия.

Золотое сечение и симметрия

Золотое сечение нельзя рассматривать само по себе, отдельно, без связи с симметрией. Великий русский кристаллограф Г.В. Вульф (1863…1925) считал золотое сечение одним из проявлений симметрии.

Золотое деление не есть проявление асимметрии, чего-то противоположного симметрии Согласно современным представлениям золотое деление – это асимметричная симметрия. В науку о симметрии вошли такие понятия, какстатическая и динамическая симметрия. Статическая симметрия характеризует покой, равновесие, а динамическая – движение, рост. Так, в природе статическая симметрия представлена строением кристаллов, а в искусстве характеризует покой, равновесие и неподвижность. Динамическая симметрия выражает активность, характеризует движение, развитие, ритм, она – свидетельство жизни. Статической симметрии свойственны равные отрезки, равные величины. Динамической симметрии свойственно увеличение отрезков или их уменьшение, и оно выражается в величинах золотого сечения возрастающего или убывающего ряда.

Библиографическое описание: Максименко О. В., Пастор В. С., Ворфоломеева П. В., Мозикова К. А., Николаева М. Е., Шмелева О. В. К понятию о Золотом сечении // Юный ученый. — 2016. — №6.1. — С. 35-39..02.2019).





«Геометрия владеет двумя сокровищами:

одно из них - теорема Пифагора,

другое - деление отрезка в среднем и крайнем отношении»

Иоганн Кеплер

Ключевые слова: золотое сечение, золотые пропорции, научный феномен.

Целью нашей работы является исследование источников информации, касающихся «Золотого сечения» в различных областях знаний, выявление закономерностей и нахождение связей между науками, выявление практического смысла Золотого сечения.

Актуальность данного исследования определяется многовековой историей использования золотого сечения в математике и искусстве. То, над чем ломали голову древние, остается актуальным и вызывающим интерес современников.

Во все времена люди пытались находить закономерности в окружающем их мире. Окружали себя предметами «правильной» с их точки зрения формы. Лишь с развитием математики людям удалось измерить «золотое соотношение», которое впоследствии получило название «Золотое сечение».

Золотое сечение - гармоническая пропорция

Золотое сечение - это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как сама большая часть относится к меньшей; или, другими словами, меньший отрезок так относится к большему, как больший ко всему (Рис.1).

a : b = b : c

Рис. 1. Деление отрезка по золотым пропорциям

Напомним Вам, что же такое золотое сечение. Наиболее емкое определение золотого сечения гласит, что меньшая часть относится к большей, как большая ко всему целому. Приблизительная его величина - 1,6180339887. В округленном процентном значении пропорции частей целого будут соотноситься как 62 % на 38 %. Это соотношение действует в формах пространства и времени .

Золотой треугольник и прямоугольник

Кроме деления отрезка на неравные части (золотое сечение) рассматривают золотой треугольник и золотой прямоугольник .

Золотой прямоугольник - это прямоугольник, длины сторон которого находятся в золотой пропорции (Рис.2).

Каждый конец пятиугольной звезды представляет собой золотой треугольник. Его стороны образуют угол 36° при вершине, а основание, отложенное на боковую сторону, делит ее в пропорции золотого сечения (Рис.3).

Рис.2. Золотой прямоугольник

Рис.3 Золотой треугольник

Пентакль

В правильной пятиконечной звезде, каждый сегмент делится пересекающим его сегментом в золотом сечении, т. е. отношение синего отрезка к зелёному, красного к синему, зелёного к фиолетовому, равны 1.618 (Рис.4).

Рис.4. Пентаграмма-гигиея

Пифагор утверждал, что пентаграмма, или, как он ее называл, гигиея представляет собой математическое совершенство, так как скрывает в себе золотое сечение. Отношение синего отрезка к зелёному, красного к синему, зелёного к фиолетовому и есть золотая пропорция.

Ряд Фибоначчи

Ряд чисел 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 и т. д. известен как ряд Фибоначчи. Особенность последовательности чисел состоит в том, что каждый ее член, начиная с третьего, равен сумме двух предыдущих , а отношение смежных чисел ряда приближается к отношению золотого деления.

Так, 21: 34 = 0,617

34: 55 = 0,618.

История золотого сечения

Принято считать, что понятие о золотом делении ввёл в научный обиход Пифагор, древнегреческий философ и математик (VI в. до н. э.). Есть предположение, что Пифагор своё знание золотого деления позаимствовал у египтян и вавилонян. И действительно, пропорции пирамиды Хеопса, храмов, барельефов, предметов быта и украшений из гробницы Тутанхамона свидетельствуют, что египетские мастера пользовались соотношениями золотого деления при их создании.

Золотые пропорции в частях тела человека

В 1855 г. немецкий исследователь золотого сечения профессор Цейзинг опубликовал свой труд «Эстетические исследования».

Цейзинг измерил около двух тысяч человеческих тел и пришел к выводу, что золотое сечение выражает средний статистический закон (Рис.5).

Рис.5 Золотые пропорции в частях тела человека

Золотое сечение в живой природе

Удивительно, как всего одно математическое понятие встречается во многих разделах человеческого знания. Оно как бы пронизывает все в мире, соединяя между собой гармонию и хаос, математику и искусство .

В биологических исследованиях было показано, что, начиная с вирусов и растений и кончая организмом человека, всюду выявляется золотая пропорция, характеризующая соразмерность и гармоничность их строения. Золотое сечение признано универсальным законом живых систем.

В ящерице с первого взгляда улавливаются приятные для нашего глаза пропорции - длина ее хвоста так относится к длине остального тела, как 62 к 38 (Рис.6).

Рис.6 Золотые пропорции в частях тела ящерицы

Золотое сечение в архитектуре

В книгах о “золотом сечении” можно найти замечание о том, что в архитектуре, как и в живописи, все зависит от положения наблюдателя, и если некоторые пропорции в здании с одной стороны кажутся образующими “золотое сечение”, то с других точек зрения они будут выглядеть иначе. “Золотое сечение” дает наиболее спокойное соотношение размеров тех или иных длин.

Одним из красивейших произведений древнегреческой архитектуры является Парфенон (Рис.7). Отношение высоты здания к его длине равно 0,618. Если произвести деление Парфенона по “золотому сечению”, то получим те или иные выступы фасада.

Другим примером из архитектуры древности является пирамида Хеопса (Рис.8).

Пропорции Великой Пирамиды выдержаны в " Золотом соотношении»

Древние строители ухитрились возвести этот величественный монумент практически с идеальной инженерной точностью и симметричностью.

Рис.7. Парфенон

Рис.8. Пирамида Хеопса

Золотое сечение в скульптуре

Пропорции «золотого сечения» создают впечатление гармонии красоты, поэтому скульпторы использовали их в своих произведениях. Так, например, знаменитая статуя Аполлона Бельведерского состоит из частей, делящихся по золотым отношениям (Рис.9).

Рис.9 Статуя Аполлона Бельведерского

Золотое сечение в живописи

Переходя к примерам «золотого сечения» в живописи, нельзя не остановить своего внимания на творчестве Леонардо да Винчи. Посмотрим внимательно на картину «Джоконда». Композиция портрета построена на золотых треугольниках (Рис.10).

Рис.10 Леонардо да Винчи «Джоконда»

Еще один пример золотого сечения в живописи – это полотно Рафаэля «Избиение младенцев» (Рис.11). На подготовительном эскизе Рафаэля проведены красные линии, идущие от смыслового центра композиции. Если естественным образом соединить эти куски кривой пунктиром, то с очень большой точностью получается...золотая спираль!

Рис.11. Рафаэль «Избиение младенцев»

Золотое сечение в литературных произведениях

Формы временно̀го искусства по-своему демонстрируют нам принцип золотого деления. Действует правило золотого сечения и в отдельно взятых произведениях русского классика. Так, в повести «Пиковая дама» 853 строки, а кульминация приходится на 535 строке (853:535=1,6) - это и есть точка золотого сечения.

Золотое сечение в кинокартинах

Кинорежиссер Сергей Эйзенштейн сценарий своего фильма «Броненосец Потёмкин» сознательно согласовывал с правилом золотого сечения, разделив ленту на пять частей.

Заключение

О золотом сечении знали еще в древнем Египте и Вавилоне, в Индии и Китае. Великий Пифагор создал тайную школу, где изучалась мистическая суть «золотого сечения». Евклид применил его, создавая свою геометрию, а Фидий - свои бессмертные скульптуры. Платон рассказывал, что Вселенная устроена согласно «золотому сечению». А Аристотель нашел соответствие «золотого сечения» этическому закону. Высшую гармонию «золотого сечения» будут проповедовать Леонардо да Винчи и Микеланджело, ведь красота и «золотое сечение» - это одно и то же. А христианские мистики будут рисовать на стенах своих монастырей пентаграммы «золотого сечения», спасаясь от Дьявола. При этом ученые - от Пачоли до Эйнштейна - будут искать, но так и не найдут его точного значения. Бесконечный ряд после запятой - 1,6180339887... Странная, загадочная, необъяснимая вещь: эта божественная пропорция мистическим образом сопутствует всему живому. Неживая природа не знает, что такое «золотое сечение». Но вы непременно увидите эту пропорцию и в изгибах морских раковин, и в форме цветов, и в облике жуков, и в красивом человеческом теле. Все живое и все красивое - все подчиняется божественному закону, имя которому - «золотое сечение». Так что же такое «золотое сечение»? Что это за идеальное, божественное сочетание? Может быть, это закон красоты? Или все-таки он - мистическая тайна? Научный феномен или этический принцип? Ответ неизвестен до сих пор. Точнее - нет, известен. «Золотое сечение» - это и то, и другое, и третье. Только не по отдельности, а одновременно... И в этом его подлинная загадка, его великая тайна.

Литература:

  1. Виленкин Н. Я., Жохов В. И. и др. Математика - 6. - М.: Мнемозина, 2015
  2. Корбалан Ф. Золотое сечение. Математический язык красоты. (Мир математики Т.1). - М.: ДеАгостини, 2014
  3. Тимердинг Г. Е. Золотое сечение. - М.: Либроком, 2009

Ключевые слова: золотое сечение, золотые пропорции, научный феномен .

Аннотация: Золотое сечение – это универсальное проявление структурной гармонии. Оно встречается в природе, науке, искусстве - во всем, с чем может соприкоснуться человек. Авторы статьи исследуют литературу, находят связи между науками, касающиеся Золотого сечения, выявляют практический смысл золотых пропорций.

© 2024 skudelnica.ru -- Любовь, измена, психология, развод, чувства, ссоры