Формула среднего квадратичного отклонения. Дисперсия

Главная / Ссоры

Математическое ожидание и дисперсия

Пусть мы измеряем случайную величину N раз, например, десять раз измеряем скорость ветра и хотим найти среднее значение. Как связано среднее значение с функцией распределения?

Будем кидать игральный кубик большое количество раз. Количество очков, которое выпадет на кубике при каждом броске, является случайной величиной и может принимать любые натуральные значения от 1 до 6. Среднее арифметическое выпавших очков, подсчитанных за все броски кубика, тоже является случайной величиной, однако при больших N оно стремится ко вполне конкретному числу – математическому ожиданию M x . В данном случае M x = 3,5.

Каким образом получилась эта величина? Пусть в N испытаниях раз выпало 1 очко, раз – 2 очка и так далее. Тогда При N → ∞ количество исходов, в которых выпало одно очко, Аналогично, Отсюда

Модель 4.5. Игральные кости

Предположим теперь, что мы знаем закон распределения случайной величины x , то есть знаем, что случайная величина x может принимать значения x 1 , x 2 , ..., x k с вероятностями p 1 , p 2 , ..., p k .

Математическое ожидание M x случайной величины x равно:

Ответ. 2,8.

Математическое ожидание не всегда является разумной оценкой какой-нибудь случайной величины. Так, для оценки средней заработной платы разумнее использовать понятие медианы, то есть такой величины, что количество людей, получающих меньшую, чем медиана, зарплату и большую, совпадают.

Медианой случайной величины называют число x 1/2 такое, что p (x < x 1/2) = 1/2.

Другими словами, вероятность p 1 того, что случайная величина x окажется меньшей x 1/2 , и вероятность p 2 того, что случайная величина x окажется большей x 1/2 , одинаковы и равны 1/2. Медиана определяется однозначно не для всех распределений.

Вернёмся к случайной величине x , которая может принимать значения x 1 , x 2 , ..., x k с вероятностями p 1 , p 2 , ..., p k .

Дисперсией случайной величины x называется среднее значение квадрата отклонения случайной величины от её математического ожидания:

Пример 2

В условиях предыдущего примера вычислить дисперсию и среднеквадратическое отклонение случайной величины x .

Ответ. 0,16, 0,4.

Модель 4.6. Стрельба в мишень

Пример 3

Найти распределение вероятности числа очков, выпавших на кубике с первого броска, медиану, математическое ожидание, дисперсию и среднеквадратичное отклонение.

Выпадение любой грани равновероятно, так что распределение будет выглядеть так:

Среднеквадратичное отклонение Видно, что отклонение величины от среднего значения очень велико.

Свойства математического ожидания:

  • Математическое ожидание суммы независимых случайных величин равно сумме их математических ожиданий:

Пример 4

Найти математическое ожидание суммы и произведения очков, выпавшей на двух кубиках.

В примере 3 мы нашли, что для одного кубика M (x ) = 3,5. Значит, для двух кубиков

Свойства дисперсии:

  • Дисперсия суммы независимых случайных величин равно сумме дисперсий:

D x + y = D x + D y .

Пусть за N бросков на кубике выпало y очков. Тогда

Этот результат верен не только для бросков кубика. Он во многих случаях определяет точность измерения математического ожидания опытным путем. Видно, что при увеличении количества измерений N разброс значений вокруг среднего, то есть среднеквадратичное отклонение, уменьшается пропорционально

Дисперсия случайной величины связана с математическим ожиданием квадрата этой случайной величины следующим соотношением:

Найдём математические ожидания обеих частей этого равенства. По определению,

Математическое же ожидание правой части равенства по свойству математических ожиданий равно

Среднее квадратическое отклонение

Среднеквадратическое отклонение равно квадратному корню из дисперсии:
При определении среднего квадратического отклонения при достаточно большом объеме изучаемой совокупности (n > 30) применяются формулы:

Похожая информация.


Квадратный корень из дисперсии носит название среднего квадратического отклонения от средней, которое рассчитывается следующим образом:

Элементарное алгебраическое преобразование формулы среднего квадратического отклонения приводит ее к следующему виду:

Эта формула часто оказывается более удобной в практике расчетов.

Среднее квадратическое отклонение так же, как и среднее линейное отклонение, показывает, на сколько в среднем отклоняются конкретные значения признака от среднего их значения. Среднее квадратическое отклонение всегда больше среднего линейного отклонения. Между ними имеется такое соотношение:

Зная это соотношение, можно по известному показатели определить неизвестный, например, но (I рассчитать а и наоборот. Среднее квадратическое отклонение измеряет абсолютный размер колеблемости признака и выражается в тех же единицах измерения, что и значения признака (рублях, тоннах, годах и т.д.). Оно является абсолютной мерой вариации.

Для альтернативных признаков, например наличия или отсутствия высшего образования, страховки, формулы дисперсии и среднего квадратического отклонения такие:

Покажем расчет среднего квадратического отклонения по данным дискретного ряда, характеризующего распределение студентов одного из факультетов вуза по возрасту (табл. 6.2).

Таблица 6.2.

Результаты вспомогательных расчетов даны в графах 2-5 табл. 6.2.

Средний возраст студента, лет, определен по формуле средней арифметической взвешенной (графа 2):

Квадраты отклонения индивидуального возраста студента от среднего содержатся в графах 3-4, а произведения квадратов отклонений на соответствующие частоты - в графе 5.

Дисперсию возраста студентов, лет, найдем по формуле (6.2):

Тогда о = л/3,43 1,85 *ода, т.е. каждое конкретное значение возраста студента отклоняется от среднего значения на 1,85 года.

Коэффициент вариации

По своему абсолютному значению среднее квадратическое отклонение зависит не только от степени вариации признака, но и от абсолютных уровней вариантов и средней. Поэтому сравнивать средние квадратические отклонения вариационных рядов с различными средними уровнями непосредственно нельзя. Чтобы иметь возможность для такого сравнения, нужно найти удельный вес среднего отклонения (линейного или квадратического) в среднем арифметическом показателе, выраженном в процентах, т.е. рассчитать относительные показатели вариации.

Линейный коэффициент вариации вычисляют по формуле

Коэффициент вариации определяют по следующей формуле:

В коэффициентах вариации устраняется не только несопоставимость, связанная с различными единицами измерения изучаемого признака, но и несопоставимость, возникающая вследствие различий в величине средних арифметических. Кроме того, показатели вариации дают характеристику однородности совокупности. Совокупность считается однородной, если коэффициент вариации не превышает 33%.

По данным табл. 6.2 и полученным выше результатам расчетов определим коэффициент вариации, %, по формуле (6.3):

Если коэффициент вариации превышает 33%, то это свидетельствует о неоднородности изучаемой совокупности. Полученное в пашем случае значение говорит о том, что совокупность студентов по возрасту однородна по своему составу. Таким образом, важная функция обобщающих показателей вариации - оценка надежности средних. Чем меньше с1, а2 и V, тем однороднее полученная совокупность явлений и надежнее полученная средняя. Согласно рассматриваемому математической статистикой "правилу трех сигм" в нормально распределенных или близких к ним рядах отклонения от средней арифметической, не превосходящие ±3ст, встречаются в 997 случаях из 1000. Таким образом, зная х и а, можно получить общее первоначальное представление о вариационном ряде. Если, например, средняя заработная плата работника по фирме составила 25 000 руб., а а равна 100 руб., то с вероятностью, близкой к достоверности, можно утверждать, что заработная плата работников фирмы колеблется в пределах (25 000 ± ± 3 х 100) т.е. от 24 700 до 25 300 руб.

Инструкция

Пусть имеется несколько чисел, характеризующих -либо однородные величины. Например, результаты измереений, взвешиваний, статистических наблюдений и т.п. Все представленные величины должны измеряться одной и той же измерения. Чтобы найти квадратичное отклонение, проделайте следующие действия.

Определите среднее арифметическое всех чисел: сложите все числа и разделите сумму на общее количество чисел.

Определите дисперсию (разброс) чисел: сложите квадраты найденных ранее отклонений и разделите полученную сумму на количество чисел.

В палате лежат семь больных с температурой 34, 35, 36, 37, 38, 39 и 40 градусов Цельсия.

Требуется определить среднее отклонение от средней .
Решение:
« по палате»: (34+35+36+37+38+39+40)/7=37 ºС;

Отклонения температур от среднего (в данном случае нормального значения): 34-37, 35-37, 36-37, 37-37, 38-37, 39-37, 40-37, получается: -3, -2, -1, 0, 1, 2, 3 (ºС);

Разделите полученную раннее сумму чисел на их количество. Для точности вычисления лучше воспользоваться калькулятором. Итог деления является средним арифметическим значением слагаемых чисел.

Внимательно отнеситесь ко всем этапам расчета, так как ошибка хоть в одном из вычислений приведет к неправильному итоговому показателю. Проверяйте полученные расчеты на каждом этапе. Среднее арифметическое число имеет тот же измеритель, что и слагаемые числа, то есть если вы определяете среднюю посещаемость , то все показатели у вас будут «человек».

Данный способ вычисления применяется только в математических и статистических расчетах. Так, например, среднего арифметического значения в информатике имеет другой алгоритм вычисления. Среднее арифметическое значение является очень условным показателем. Оно показывает вероятность того или иного события при условии, что у него только один фактор либо показатель. Для наиболее глубокого анализа необходимо учитывать множество факторов. Для этого применяется вычисление более общих величин.

Среднее арифметическое - одна из мер центральной тенденции, широко используемая в математике и статистических расчетах. Найти среднее арифметическое число для нескольких значений очень просто, но у каждой задачи есть свои нюансы, знать которые для выполнения верных расчетов просто необходимо.

Количественных результатов проведенных подобных опытов.

Как найти среднее арифметическое число

Поиск среднего арифметического числа для массива чисел следует начинать с определения алгебраической суммы этих значений. К примеру, если в массиве присутствуют числа 23, 43, 10, 74 и 34, то их алгебраическая сумма будет равна 184. При записи среднее арифметическое обозначается буквой μ (мю) или x (икс с чертой). Далее алгебраическую сумму следует разделить на количество чисел в массиве. В рассматриваемом примере чисел было пять, поэтому среднее арифметическое будет равно 184/5 и составит 36,8.

Особенности работы с отрицательными числами

Если в массиве присутствуют отрицательные числа, то нахождение среднего арифметического значения происходит по аналогичному алгоритму. Разница имеется только при рассчетах в среде программирования, или же если в задаче есть дополнительные условия. В этих случаях нахождение среднего арифметического чисел с разными знаками сводится к трем действиям:

1. Нахождение общего среднего арифметического числа стандартным методом;
2. Нахождение среднего арифметического отрицательным чисел.
3. Вычисление среднего арифметического положительных чисел.

Ответы каждого из действий записываются через запятую.

Натуральные и десятичные дроби

Если массив чисел представлен десятичными дробями, решение происходит по методу вычисления среднего арифметического целых чисел, но сокращение результата производится по требованиям задачи к точности ответа.

При работе с натуральными дробями их следует привести к общему знаменателю, который умножается на количество чисел в массиве. В числителе ответа будет сумма приведенных числителей исходных дробных элементов.

Материал из Википедии - свободной энциклопедии

Среднеквадрати́ческое отклоне́ние (синонимы: среднее квадрати́ческое отклоне́ние , среднеквадрати́чное отклоне́ние , квадрати́чное отклоне́ние ; близкие термины: станда́ртное отклоне́ние , станда́ртный разбро́с ) - в теории вероятностей и статистике наиболее распространённый показатель рассеивания значений случайной величины относительно её математического ожидания . При ограниченных массивах выборок значений вместо математического ожидания используется среднее арифметическое совокупности выборок.

Основные сведения

Среднеквадратическое отклонение измеряется в единицах измерения самой случайной величины и используется при расчёте стандартной ошибки среднего арифметического , при построении доверительных интервалов , при статистической проверке гипотез , при измерении линейной взаимосвязи между случайными величинами. Определяется как квадратный корень из дисперсии случайной величины .

Среднеквадратическое отклонение:

\sigma=\sqrt{\frac{1}{n}\sum_{i=1}^n\left(x_i-\bar{x}\right)^2}.

Стандартное отклонение (оценка среднеквадратического отклонения случайной величины x относительно её математического ожидания на основе несмещённой оценки её дисперсии) s:

s=\sqrt{\frac{n}{n-1}\sigma^2}=\sqrt{\frac{1}{n-1}\sum_{i=1}^n\left(x_i-\bar{x}\right)^2};

Правило трёх сигм

Правило трёх сигм (3\sigma) - практически все значения нормально распределённой случайной величины лежат в интервале \left(\bar{x}-3\sigma;\bar{x}+3\sigma\right). Более строго - приблизительно с вероятностью 0,9973 значение нормально распределённой случайной величины лежит в указанном интервале (при условии, что величина \bar{x} истинная, а не полученная в результате обработки выборки).

Если же истинная величина \bar{x} неизвестна, то следует пользоваться не \sigma, а s . Таким образом, правило трёх сигм преобразуется в правило трёх s .

Интерпретация величины среднеквадратического отклонения

Большее значение среднеквадратического отклонения показывает больший разброс значений в представленном множестве со средней величиной множества; меньшее значение, соответственно, показывает, что значения в множестве сгруппированы вокруг среднего значения.

Например, у нас есть три числовых множества: {0, 0, 14, 14}, {0, 6, 8, 14} и {6, 6, 8, 8}. У всех трёх множеств средние значения равны 7, а среднеквадратические отклонения, соответственно, равны 7, 5 и 1. У последнего множества среднеквадратическое отклонение маленькое, так как значения в множестве сгруппированы вокруг среднего значения; у первого множества самое большое значение среднеквадратического отклонения - значения внутри множества сильно расходятся со средним значением.

В общем смысле среднеквадратическое отклонение можно считать мерой неопределённости. К примеру, в физике среднеквадратическое отклонение используется для определения погрешности серии последовательных измерений какой-либо величины. Это значение очень важно для определения правдоподобности изучаемого явления в сравнении с предсказанным теорией значением: если среднее значение измерений сильно отличается от предсказанных теорией значений (большое значение среднеквадратического отклонения), то полученные значения или метод их получения следует перепроверить.

Практическое применение

На практике среднеквадратическое отклонение позволяет оценить, насколько значения из множества могут отличаться от среднего значения.

Экономика и финансы

Среднее квадратическое отклонение доходности портфеля \sigma =\sqrt{D[X]} отождествляется с риском портфеля.

Климат

Предположим, существуют два города с одинаковой средней максимальной дневной температурой, но один расположен на побережье, а другой на равнине. Известно, что в городах, расположенных на побережье, множество различных максимальных дневных температур меньше, чем у городов, расположенных внутри континента. Поэтому среднеквадратическое отклонение максимальных дневных температур у прибрежного города будет меньше, чем у второго города, несмотря на то, что среднее значение этой величины у них одинаковое, что на практике означает, что вероятность того, что максимальная температура воздуха каждого конкретного дня в году будет сильнее отличаться от среднего значения, выше у города, расположенного внутри континента.

Спорт

Предположим, что есть несколько футбольных команд, которые оцениваются по некоторому набору параметров, например, количеству забитых и пропущенных голов, голевых моментов и т. п. Наиболее вероятно, что лучшая в этой группе команда будет иметь лучшие значения по большему количеству параметров. Чем меньше у команды среднеквадратическое отклонение по каждому из представленных параметров, тем предсказуемее является результат команды, такие команды являются сбалансированными. С другой стороны, у команды с большим значением среднеквадратического отклонения сложно предсказать результат, что в свою очередь объясняется дисбалансом, например, сильной защитой, но слабым нападением.

Использование среднеквадратического отклонения параметров команды позволяет в той или иной мере предсказать результат матча двух команд, оценивая сильные и слабые стороны команд, а значит, и выбираемых способов борьбы.

См. также

Напишите отзыв о статье "Среднеквадратическое отклонение"

Литература

  • Боровиков В. STATISTICA. Искусство анализа данных на компьютере: Для профессионалов / В. Боровиков. - СПб. : Питер, 2003. - 688 с. - ISBN 5-272-00078-1 . .

Отрывок, характеризующий Среднеквадратическое отклонение

И, быстро отворив дверь, он вышел решительными шагами на балкон. Говор вдруг умолк, шапки и картузы снялись, и все глаза поднялись к вышедшему графу.
– Здравствуйте, ребята! – сказал граф быстро и громко. – Спасибо, что пришли. Я сейчас выйду к вам, но прежде всего нам надо управиться с злодеем. Нам надо наказать злодея, от которого погибла Москва. Подождите меня! – И граф так же быстро вернулся в покои, крепко хлопнув дверью.
По толпе пробежал одобрительный ропот удовольствия. «Он, значит, злодеев управит усех! А ты говоришь француз… он тебе всю дистанцию развяжет!» – говорили люди, как будто упрекая друг друга в своем маловерии.
Через несколько минут из парадных дверей поспешно вышел офицер, приказал что то, и драгуны вытянулись. Толпа от балкона жадно подвинулась к крыльцу. Выйдя гневно быстрыми шагами на крыльцо, Растопчин поспешно оглянулся вокруг себя, как бы отыскивая кого то.
– Где он? – сказал граф, и в ту же минуту, как он сказал это, он увидал из за угла дома выходившего между, двух драгун молодого человека с длинной тонкой шеей, с до половины выбритой и заросшей головой. Молодой человек этот был одет в когда то щегольской, крытый синим сукном, потертый лисий тулупчик и в грязные посконные арестантские шаровары, засунутые в нечищеные, стоптанные тонкие сапоги. На тонких, слабых ногах тяжело висели кандалы, затруднявшие нерешительную походку молодого человека.
– А! – сказал Растопчин, поспешно отворачивая свой взгляд от молодого человека в лисьем тулупчике и указывая на нижнюю ступеньку крыльца. – Поставьте его сюда! – Молодой человек, брянча кандалами, тяжело переступил на указываемую ступеньку, придержав пальцем нажимавший воротник тулупчика, повернул два раза длинной шеей и, вздохнув, покорным жестом сложил перед животом тонкие, нерабочие руки.
Несколько секунд, пока молодой человек устанавливался на ступеньке, продолжалось молчание. Только в задних рядах сдавливающихся к одному месту людей слышались кряхтенье, стоны, толчки и топот переставляемых ног.
Растопчин, ожидая того, чтобы он остановился на указанном месте, хмурясь потирал рукою лицо.
– Ребята! – сказал Растопчин металлически звонким голосом, – этот человек, Верещагин – тот самый мерзавец, от которого погибла Москва.
Молодой человек в лисьем тулупчике стоял в покорной позе, сложив кисти рук вместе перед животом и немного согнувшись. Исхудалое, с безнадежным выражением, изуродованное бритою головой молодое лицо его было опущено вниз. При первых словах графа он медленно поднял голову и поглядел снизу на графа, как бы желая что то сказать ему или хоть встретить его взгляд. Но Растопчин не смотрел на него. На длинной тонкой шее молодого человека, как веревка, напружилась и посинела жила за ухом, и вдруг покраснело лицо.
Все глаза были устремлены на него. Он посмотрел на толпу, и, как бы обнадеженный тем выражением, которое он прочел на лицах людей, он печально и робко улыбнулся и, опять опустив голову, поправился ногами на ступеньке.
– Он изменил своему царю и отечеству, он передался Бонапарту, он один из всех русских осрамил имя русского, и от него погибает Москва, – говорил Растопчин ровным, резким голосом; но вдруг быстро взглянул вниз на Верещагина, продолжавшего стоять в той же покорной позе. Как будто взгляд этот взорвал его, он, подняв руку, закричал почти, обращаясь к народу: – Своим судом расправляйтесь с ним! отдаю его вам!
Народ молчал и только все теснее и теснее нажимал друг на друга. Держать друг друга, дышать в этой зараженной духоте, не иметь силы пошевелиться и ждать чего то неизвестного, непонятного и страшного становилось невыносимо. Люди, стоявшие в передних рядах, видевшие и слышавшие все то, что происходило перед ними, все с испуганно широко раскрытыми глазами и разинутыми ртами, напрягая все свои силы, удерживали на своих спинах напор задних.
– Бей его!.. Пускай погибнет изменник и не срамит имя русского! – закричал Растопчин. – Руби! Я приказываю! – Услыхав не слова, но гневные звуки голоса Растопчина, толпа застонала и надвинулась, но опять остановилась.
– Граф!.. – проговорил среди опять наступившей минутной тишины робкий и вместе театральный голос Верещагина. – Граф, один бог над нами… – сказал Верещагин, подняв голову, и опять налилась кровью толстая жила на его тонкой шее, и краска быстро выступила и сбежала с его лица. Он не договорил того, что хотел сказать.
– Руби его! Я приказываю!.. – прокричал Растопчин, вдруг побледнев так же, как Верещагин.
– Сабли вон! – крикнул офицер драгунам, сам вынимая саблю.
Другая еще сильнейшая волна взмыла по народу, и, добежав до передних рядов, волна эта сдвинула переднии, шатая, поднесла к самым ступеням крыльца. Высокий малый, с окаменелым выражением лица и с остановившейся поднятой рукой, стоял рядом с Верещагиным.
– Руби! – прошептал почти офицер драгунам, и один из солдат вдруг с исказившимся злобой лицом ударил Верещагина тупым палашом по голове.
«А!» – коротко и удивленно вскрикнул Верещагин, испуганно оглядываясь и как будто не понимая, зачем это было с ним сделано. Такой же стон удивления и ужаса пробежал по толпе.
«О господи!» – послышалось чье то печальное восклицание.
Но вслед за восклицанием удивления, вырвавшимся У Верещагина, он жалобно вскрикнул от боли, и этот крик погубил его. Та натянутая до высшей степени преграда человеческого чувства, которая держала еще толпу, прорвалось мгновенно. Преступление было начато, необходимо было довершить его. Жалобный стон упрека был заглушен грозным и гневным ревом толпы. Как последний седьмой вал, разбивающий корабли, взмыла из задних рядов эта последняя неудержимая волна, донеслась до передних, сбила их и поглотила все. Ударивший драгун хотел повторить свой удар. Верещагин с криком ужаса, заслонясь руками, бросился к народу. Высокий малый, на которого он наткнулся, вцепился руками в тонкую шею Верещагина и с диким криком, с ним вместе, упал под ноги навалившегося ревущего народа.
Одни били и рвали Верещагина, другие высокого малого. И крики задавленных людей и тех, которые старались спасти высокого малого, только возбуждали ярость толпы. Долго драгуны не могли освободить окровавленного, до полусмерти избитого фабричного. И долго, несмотря на всю горячечную поспешность, с которою толпа старалась довершить раз начатое дело, те люди, которые били, душили и рвали Верещагина, не могли убить его; но толпа давила их со всех сторон, с ними в середине, как одна масса, колыхалась из стороны в сторону и не давала им возможности ни добить, ни бросить его.

Стоит отметить, что у такого расчета дисперсии есть недостаток – она получается смещенной, т.е. ее математическое ожидание не равно истинному значению дисперсии. Подробней об этом . В то же время не все так плохо. При увеличении объема выборки она все-таки приближается к своему теоретическому аналогу, т.е. является асимптотически не смещенной. Поэтому при работе с большими размерами выборок можно использовать формулу выше.

Язык знаков полезно перевести на язык слов. Получится, что дисперсия — это средний квадрат отклонений. То есть вначале рассчитывается среднее значение, затем берется разница между каждым исходным и средним значением, возводится в квадрат, складывается и затем делится на количество значений в данной совокупности. Разница между отдельным значением и средней отражает меру отклонения. В квадрат возводится для того, чтобы все отклонения стали исключительно положительными числами и чтобы избежать взаимоуничтожения положительных и отрицательных отклонений при их суммировании. Затем, имея квадраты отклонений, мы просто рассчитываем среднюю арифметическую. Средний – квадрат – отклонений. Отклонения возводятся в квадрат, и считается средняя. Разгадка заключается всего в трех словах.

Однако в чистом виде, как, например, средняя арифметическая, или индекс, дисперсия не используется. Это скорее вспомогательный и промежуточный показатель, который необходим для других видов статистического анализа. У нее даже единицы измерения нормальной нет. Судя по формуле, это квадрат единицы измерения исходных данных. Без бутылки, как говорится, не разберешься.

{module 111}

Дабы вернуть дисперсию в реальность, то есть использовать в более приземленных целей, из нее извлекают квадратный корень. Получается так называемое среднеквадратичное отклонение (СКО) . Встречаются названия «стандартное отклонение» или «сигма» (от названия греческой буквы). Формула стандартного отклонения имеет вид:

Для получения этого показателя по выборке используют формулу:

Как и с дисперсией, есть и немного другой вариант расчета . Но с ростом выборки разница исчезает.

Среднеквадратичное отклонение, очевидно, также характеризует меру рассеяния данных, но теперь (в отличие от дисперсии) его можно сравнивать с исходными данными, так как единицы измерения у них одинаковые (это явствует из формулы расчета). Но и этот показатель в чистом виде не очень информативен, так как в нем заложено слишком много промежуточных расчетов, которые сбивают с толку (отклонение, в квадрат, сумма, среднее, корень). Тем не менее, со среднеквадратичным отклонением уже можно работать непосредственно, потому что свойства данного показателя хорошо изучены и известны. К примеру, есть такое правило трех сигм , которое гласит, что у данных 997 значений из 1000 находятся в пределах ±3 сигмы от средней арифметической. Среднеквадратичное отклонение, как мера неопределенности, также участвует во многих статистических расчетах. С ее помощью устанавливают степень точности различных оценок и прогнозов. Если вариация очень большая, то стандартное отклонение тоже получится большим, следовательно, и прогноз будет неточным, что выразится, к примеру, в очень широких доверительных интервалах.

Коэффициент вариации

Среднее квадратическое отклонение дает абсолютную оценку меры разброса. Поэтому чтобы понять, насколько разброс велик относительно самих значений (т.е. независимо от их масштаба), требуется относительный показатель. Такой показатель называется коэффициентом вариации и рассчитывается по следующей формуле:

Коэффициент вариации измеряется в процентах (если умножить на 100%). По этому показателю можно сравнивать самых разных явлений независимо от их масштаба и единиц измерения. Данный факт и делает коэффициент вариации столь популярным.

В статистике принято, что, если значение коэффициента вариации менее 33%, то совокупность считается однородной, если больше 33%, то – неоднородной. Мне здесь трудно что-то прокомментировать. Не знаю, кто и почему так определил, но это считается аксиомой.

Чувствую, что я увлекся сухой теорией и нужно привести что-то наглядное и образное. С другой стороны все показатели вариации описывают примерно одно и то же, только рассчитываются по-разному. Поэтому разнообразием примеров блеснуть трудно, Отличаться могут лишь значения показателей, но не их суть. Вот и сравним, как отличаются значения различных показателей вариации для одной и той же совокупности данных. Возьмем пример с расчетом среднего линейного отклонения (из ). Вот исходные данные:

И график для напоминания.

По этим данным рассчитаем различные показатели вариации.

Среднее значение – это обычная средняя арифметическая.

Размах вариации – разница между максимумом и минимумом:

Среднее линейное отклонение считается по формуле:

Стандартное отклонение:

Расчет сведем в табличку.

Как видно, среднее линейное и среднеквадратичное отклонение дают похожие значения степени вариации данных. Дисперсия – это сигма в квадрате, поэтому она всегда будет относительно большим числом, что, собственно, ни о чем не говорит. Размах вариации – это разница между крайними значениями и может говорить о многом.

Подведем некоторые итоги.

Вариация показателя отражает изменчивость процесса или явления. Ее степень может измеряться с помощью нескольких показателей.

1. Размах вариации – разница между максимумом и минимумом. Отражает диапазон возможных значений.
2. Среднее линейное отклонение – отражает среднее из абсолютных (по модулю) отклонений всех значений анализируемой совокупности от их средней величины.
3. Дисперсия – средний квадрат отклонений.
4. Среднеквадратичное отклонение – корень из дисперсии (среднего квадрата отклонений).
5. Коэффициент вариации – наиболее универсальный показатель, отражающий степень разброса значений независимо от их масштаба и единиц измерения. Коэффициент вариации измеряется в процентах и может быть использован для сравнения вариации различных процессов и явлений.

Таким образом, в статистическом анализе существует система показателей, отражающих однородность явлений и устойчивость процессов. Часто показатели вариации не имеют самостоятельного смысла и используются для дальнейшего анализа данных (расчет доверительных интервалов

© 2024 skudelnica.ru -- Любовь, измена, психология, развод, чувства, ссоры