Фундаментальные и прикладные исследования в технических науках. Уровни и виды исследований

Главная / Ссоры

Прикладное исследование - это такое исследование, результаты которого адресованы производителям и заказчикам и которое направляется нуждами или желаниями этих клиентов, фундаментальное - адресовано другим членам научного сообщества. Современная техника не так далека от теории, как это иногда кажется. Она не является только применением существующего научного знания, но имеет творческую компоненту. Поэтому в методологическом плане техническое исследование (т.е. исследование в технической науке) не очень сильно отличается от научного. Для современной инженерной деятельности требуются не только краткосрочные исследования, направленные на решение специальных задач, но и широкая долговременная программа фундаментальных исследований в лабораториях и институтах, специально предназначенных для развития технических наук. В то же время современные фундаментальные исследования (особенно в технических науках) более тесно связаны с приложениями, чем это было раньше.

Для современного этапа развития науки и техники характерно использование методов фундаментальных исследований для решения прикладных проблем. Тот факт, что исследование является фундаментальным, еще не означает, что его результаты неутилитарны. Работа же, направленная на прикладные цели, может быть весьма фундаментальной. Критериями их разделения являются в основном временной фактор и степень общности. Вполне правомерно сегодня говорить и о фундаментальном промышленном исследовании.

Вспомним имена великих ученых, бывших одновременно инженерами и изобретателями: Д. У. Гиббс - химик-теоретик - начал свою карьеру как механик-изобретатель; Дж. фон Нейман начал как инженер-химик, далее занимался абстрактной математикой и впоследствии опять вернулся к технике; Н. Винер и К. Шеннон были одновременно и инженерами и первоклассными математиками. Список может быть продолжен: Клод Луис Навье, инженер французского Корпуса мостов и дорог, проводил исследования в математике и теоретической механике; Вильям Томсон (лорд Кельвин) удачно сочетал научную карьеру с постоянными поисками в сфере инженерных и технологических инноваций; физик-теоретик Вильгельм Бьеркнес стал практическим метеорологомѕ...

Хороший техник ищет решения, даже если они еще не полностью приняты наукой, а прикладные исследования и разработки все более и более выполняются людьми с исходной подготовкой в области фундаментальной науки.

Таким образом, в научно-технических дисциплинах необходимо четко различать исследования, включенные в непосредственную инженерную деятельность (независимо от того, в каких организационных формах они протекают), и теоретические исследования, которые мы будем далее называть технической теорией .

Для того, чтобы выявить особенности технической теории, ее сравнивают прежде всего с естественнонаучной. Г. Сколимовский писал: "техническая теория создает реальность, в то время как научная теория только исследует и объясняет ее". По мнению Ф. Раппа, решительный поворот в развитии технических наук состоял "в связывании технических знаний с математико-естественнонаучными методами". Этот автор различает также "гипотетико-дедуктивный метод" (идеализированная абстракция) естественнонаучной теории и "проективно-прагматический метод" (общая схема действия) технической науки.

Г. Беме отмечал, что "техническая теория составляется так, чтобы достичь определенной оптимизации". Для современной науки характерно ее "ответвление в специальные технические теории". Это происходит за счет построения специальных моделей в двух направлениях: формулировки теорий технических структур и конкретизации общих научных теорий. Можно рассмотреть в качестве примера становление химической технологии как научной дисциплины, где осуществлялась разработка специальных моделей, которые связывали более сложные технические процессы и операции с идеализированными объектами фундаментальной науки. По мнению Беме, многие первые научные теории были, по сути дела, теориями научных инструментов, т.е. технических устройств: например, физическая оптика - это теория микроскопа и телескопа, пневматика - теория насоса и барометра, а термодинамика - теория паровой машины и двигателя.

Марио Бунге подчеркивал, что в технической науке теория - не только вершина исследовательского цикла и ориентир для дальнейшего исследования, но и основа системы правил, предписывающих ход оптимального технического действия. Такая теория либо рассматривает объекты действия (например, машины), либо относится к самому действию (например, к решениям, которые предшествуют и управляют производством или использованием машин). Бунге различал также научные законы , описывающие реальность, и технические правила , которые описывают ход действия, указывают, как поступать, чтобы достичь определенной цели (являются инструкцией к выполнению действий). В отличие от закона природы, который говорит о том, какова форма возможных событий , технические правила являются нормами . В то время, как утверждения, выражающие законы, могут быть более или менее истинными , правила могут быть более или менее эффективными . Научное предсказание говорит о том, что случится или может случиться при определенных обстоятельствах. Технический прогноз , который исходит из технической теории, формулирует предположение о том, как повлиять на обстоятельства, чтобы могли произойти определенные события или, напротив, их можно было бы предотвратить.

Наибольшее различие между физической и технической теориями заключается в характере идеализации: физик может сконцентрировать свое внимание на наиболее простых случаях (например, элиминировать трение, сопротивление жидкости и т.д.), но все это является весьма существенным для технической теории и должно приниматься ею во внимание. Таким образом, техническая теория имеет дело с более сложной реальностью, поскольку не может элиминировать сложное взаимодействие физических факторов, имеющих место в машине. Техническая теория является менее абстрактной и идеализированной, она более тесно связана с реальным миром инженерии. Специальный когнитивный статус технических теорий выражается в том, что технические теории имеют дело с искусственными устройствами, или артефактами, в то время как научные теории относятся к естественным объектам. Однако противопоставление естественных объектов и артефактов еще не дает реального основания для проводимого различения. Почти все явления, изучаемые современной экспериментальной наукой, созданы в лабораториях и в этом плане представляют собой артефакты.

По мнению Э. Лейтона, техническую теорию создает особый слой посредников - "ученые-инженеры" или "инженеры-ученые". Ибо для того, чтобы информация перешла от одного сообщества (ученых) к другому (инженеров), необходима ее серьезная переформулировка и развитие. Так, Максвелл был одним из тех ученых, которые сознательно пытались сделать вклад в технику (и он действительно оказал на нее большое влияние). Но потребовались почти столь же мощные творческие усилия британского инженера Хэвисайда, чтобы преобразовать электромагнитные уравнения Максвелла в такую форму, которая могла быть использована инженерами. Таким посредником был, например, шотландский ученый-инженер Рэнкин - ведущая фигура в создании термодинамики и прикладной механики, которому удалось связать практику построения паровых двигателей высокого давления с научными законами. Для такого рода двигателей закон БойляМариотта в чистом виде не применим. Рэнкин доказал необходимость развития промежуточной формы знания - между физикой и техникой. Действия машины должны основываться на теоретических понятиях, а свойства материалов выбираться на основе твердо установленных экспериментальных данных. В паровом двигателе изучаемым материалом был пар, а законы действия были законами создания и исчезновения теплоты, установленными в рамках формальных теоретических понятий. Поэтому работа двигателя в равной мере зависела и от свойств пара (устанавливаемых практически), и от состояния теплоты в этом паре. Рэнкин сконцентрировал свое внимание на том, как законы теплоты влияют на свойства пара. Но в соответствии с его моделью, получалось, что и свойства пара могут изменить действие теплоты. Проведенный анализ действия расширения пара позволил Рэнкину открыть причины потери эффективности двигателей и рекомендовать конкретные мероприятия, уменьшающие негативное действие расширения. Модель технической науки, предложенная Рэнкиным, обеспечила применение теоретических идей к практическим проблемам и привела к образованию новых понятий на основе объединения элементов науки и техники.

Технические теории в свою очередь оказывают большое обратное влияние на физическую науку и даже в определенном смысле на всю физическую картину мира. Например, (по сути, - техническая) теория упругости была генетической основой модели эфира, а гидродинамика - вихревых теорий материи.

Таким образом, в современной философии техники исследователям удалось выявить фундаментальное теоретическое исследование в технических науках и провести первичную классификацию типов технической теории. Разделение исследований в технических науках на фундаментальные и прикладные позволяет выделить и рассматривать техническую теорию в качестве предмета особого философско-методологического анализа и перейти к изучению ее внутренней структуры.

Голландский исследователь П. Кроес утверждал, что теория, имеющая дело с артефактами, обязательно претерпевает изменение своей структуры. Он подчеркивал, что естественнонаучные и научно-технические знания являются в равной степени знаниями о манипуляции с природой, что и естественные, и технические науки имеют дело с артефактами и сами создают их. Однако между двумя видами теорий существует также фундаментальное отличие, и оно заключается в том, что в рамках технической теории важнейшее место принадлежит проектным характеристикам и параметрам.

Исследование соотношения и взаимосвязи естественных и технических наук направлено также на то, чтобы обосновать возможность использования при анализе технических наук методологических средств, развитых в философии науки в процессе исследования естествознания. При этом в большинстве работ анализируются в основном связи, сходства и различия физической и технической теории (в ее классической форме), которая основана на применении к инженерной практике главным образом физических знаний.

Однако за последние десятилетия возникло множество технических теорий, которые основываются не только на физике и могут быть названы абстрактными техническими теориями (например, системотехника, информатика или теория проектирования), для которых характерно включение в фундаментальные инженерные исследования общей методологии. Для трактовки отдельных сложных явлений в технических разработках могут быть привлечены часто совершенно различные, логически не связанные теории. Такие теоретические исследования становятся по самой своей сути комплексными и непосредственно выходят не только в сферу "природы", но и в сферу "культуры". "Необходимо брать в расчет не только взаимодействие технических разработок с экономическими факторами, но также связь техники с культурными традициями, а также психологическими, историческими и политическими факторами". Таким образом, мы попадаем в сферу анализа социального контекста научно-технических знаний.

Теперь рассмотрим последовательно: во-первых, генезис технических теорий классических технических наук и их отличие от физических теорий; во-вторых, особенности теоретико-методологического синтеза знаний в современных научно-технических дисциплинах и, в-третьих, развитие современной инженерной деятельности и необходимость социальной оценки техники.

Прикладная наука – исследования, направленные на использование научных знаний и методов для решения практических задач, на создание новых, либо совершенствование существующих видов продукции или технологических процессов. Прикладные исследования могут включать расчёты, эксперименты, макетирование и испытание макетов, компьютерное моделирование.

Фундаментальная наука – исследование законов природы и общества, направленное на получение новых и углубление имеющихся знаний об изучаемых объектах. Целью таких исследований является расширение горизонта науки. Решение конкретных практических задач при этом, как правило, не предусматривается. Иногда в англоязычной литературе различают «базовые» исследования и «фундаментальные». Первые считаются «чистой наукой», далёкой от практики, накоплением знаний ради знаний, вторые направлены на получение знаний, которые когда-нибудь принесут практическую пользу.

Фундаментальные аспекты науки : наука как знание, как познавательная деятельность, как социальный институт, как инновационная деятельность, как социокультурная подсистема.

Фундаментальные и прикладные исследования – типы исследований, различающихся по своим социально-культурным ориентациям, по форме организации и трансляции знания, а соответственно, по характерным для каждого типа формам взаимодействия исследователей и их объединений. Все различия, однако, относятся к окружению, в котором работает исследователь, в то время как собственно исследовательский процесс – получение нового знания как основа научной профессии – в обоих типах исследований протекает абсолютно одинаково. Социальные функции фундаментальных и прикладных исследований в современном науковедении определяются следующим образом. Фундаментальные исследования направлены на усиление интеллектуального потенциала общества (страны, региона…) путём получения нового знания и его использования в общем образовании и подготовке специалистов практически всех современных профессий. Ни одна форма организации человеческого опыта не может заменить в этой функции науку, выступающую как существенная составляющая культуры. Прикладные исследования направлены на интеллектуальное обеспечение инновационного процесса как основы социально-экономического развития современной цивилизации. Знания, получаемые в прикладных исследованиях , ориентированы на непосредственное использование в других областях деятельности (технологии, экономики, социальном управлении и т. д.).

Вопрос №53

ФУНДАМЕНТАЛЬНЫЕ И ПРИКЛАДНЫЕ ИССЛЕДОВАНИЯ

ФУНДАМЕНТАЛЬНЫЕ И ПРИКЛАДНЫЕ ИССЛЕДОВАНИЯ - типы исследований, различающиеся по своим социально-культурным ориентациям, по форме организации и трансляции знания, а соответственно по характерным для каждого типа формам взаимодействия исследователей и их объединений. Все различия, однако, относятся к окружению, в котором работает исследователь, в то как собственно исследовательский - получение нового знания как основа научной профессии - в обоих типах исследований протекает одинаково.

Фундаментальные исследования направлены на усиление интеллектуального потенциала общества путем получения нового знания и его использования в общем образовании и подготовке специалистов практически всех современных профессии. Ни одна организации человеческого опыта не может заменить в этой функции науку, выступающую как существенная составляющая культуры. Прикладные исследования направлены на интеллектуальное обеспечение инновационного процесса как основы социально-экономического развития современной цивилизации. Знания, получаемые в прикладных исследованиях, ориентированы на непосредственное использование в других областях деятельности (технологии, экономике, социальном управлении и т. д.).

Фундаментальные и прикладные исследования являются двумя формами осуществления науки как профессии, характеризующейся единой системой подготовки специалистов и единым массивом базового знания. Более того, различия в организации знания в этих типах исследования не создают принципиальных препятствий для взаимного интеллектуального обогащения обеих исследовательских . Организация деятельности и знания в фундаментальных исследованиях задается системой и механизмами научной дисциплины, которых направлено на максимальную интенсификацию исследовательского процесса. Важнейшим средством при этом выступает оперативное привлечение всего сообщества к экспертизе каждого нового результата исследований, претендующего на в корпус научного знания. Коммуникационные механизмы дисциплины позволяют включать в такого рода экспертизу новые результаты независимо от того, в каких исследованиях эти результаты получены. При этом значительная часть научных результатов, вошедших в корпус знания фундаментальных дисциплин, была получена в ходе прикладных исследований.

Формирование прикладных исследований как организационно специфичной сферы ведения научной деятельности, целенаправленное систематическое которой приходит на смену утилизации случайных единичных изобретений, относится к . 19 в. и обычно связывается с созданием и деятельностью лаборатории Ю. Либиха в Германии. Перед 1-й мировой войной прикладные исследования как основа для разработки новых видов техники (прежде всего военной) становятся неотъемлемой частью общего научно-технического развития. К сер. 20 в. они постепенно превращаются в ключевой элемент научно-технического обеспечения всех отраслей народного хозяйства и управления.

Хотя в конечном счете социальная прикладных исследований направлена на снабжение инновациями научно-технического и социально-экономического прогресса в целом, непосредственная задача любой исследовательской группы и организации состоит в обеспечении конкурентного преимущества той организационной структуры (фирмы, корпорации, отрасли, отдельного государства), в рамках которой осуществляются исследования. Эта задача определяет приоритеты в деятельности исследователей и в работе по организации знания: проблематики, состав исследовательских групп (как , междисциплинарных), внешних коммуникаций, засекречивание промежуточных результатов и юридическая защита конечных интеллектуальных продуктов исследовательской и инженерной деятельности (патенты, лицензии и т п.).

Ориентация прикладных исследований на внешние приоритеты и ограничение коммуникаций внутри исследовательского сообщества резко снижают эффективность внутренних информационных процессов (в частности, научной критики как основного двигателя научного познания).

Поиск целей исследований опирается на систему научно-технического прогнозирования, которая дает информацию о раз

витии рынка, формировании потребностей, а тем самым и о перспективности тех или иных инноваций. Система научнотехнической информации снабжает прикладные исследования сведениями как о достижениях в различных областях фундаментальной науки, так и о новейших прикладных разработках, уже достигших лицензионного уровня.

Знание, полученное в прикладных исследованиях (за исключением временно засекреченных сведений о промежуточных результатах), организуется в универсальной для науки форме научных дисциплин (технические, медицинские, сельскохозяйственные и др. науки) и в этом стандартном виде используется для подготовки специалистов и поиска базовых закономерностей. Единство науки не разрушается наличием различных типов исследований, а приобретает новую форму, соответствующую современной ступени социально-экономического развития. См. также ст. Наука .

Э. М. Мирский

Новая философская энциклопедия: В 4 тт. М.: Мысль . Под редакцией В. С. Стёпина . 2001 .


Смотреть что такое "ФУНДАМЕНТАЛЬНЫЕ И ПРИКЛАДНЫЕ ИССЛЕДОВАНИЯ" в других словарях:

    ФУНДАМЕНТАЛЬНЫЕ И ПРИКЛАДНЫЕ ИССЛЕДОВАНИЯ - типы исследований, различающиеся по своим социально культурным ориентациям, по форме организации и трансляции знания, а соответственно, по характерным для каждого типа формам взаимодействия исследователей и их объединений. Все различия, однако,… … Философия науки: Словарь основных терминов

    - (НИР и ОКР, applied research, research and development R D) – научные исследования, направленные на решение социально практических проблем. Наука (science) сфера человеческой деятельности, функцией которой является выработка и теоретическая… … Википедия

    П. и. ориентированы в большей степени на рез ты, чем на концепции, и эти исслед. проводятся чаще в самой проблемной среде, чем в лаборатории. Поскольку такая ситуация носит комплексный характер и, как правило, широко охватывает самых разных людей … Психологическая энциклопедия

    Исследования и разработки доконкурентные - научные исследования и разработки на этапе, когда их результаты не имеют конкретной коммерческой ценности (преимущественно фундаментальные исследования и частично прикладные исследования на их начальном этапе) … Толковый словарь «Инновационная деятельность». Термины инновационного менеджмента и смежных областей

    ИССЛЕДОВАНИЯ НАУЧНЫЕ - ключевой элемент научно технич. прогресса, сфера профессиональной активности, обеспечивающей систематич. получение новых объективных универсально сформулированных знаний о закономерностях развития природы и об ва с помощью методов и средств,… … Российская социологическая энциклопедия

    Морские научные исследования на континентальном шельфе... - фундаментальные или прикладные исследования и экспериментальные работы, проводимые для этих исследований и направленные на получение знаний по всем аспектам природных процессов, происходящих на морском дне и в его недрах. Федеральный закон от… … Словарь юридических понятий

    Морские научные исследования в исключительной экономической зоне - фундаментальные или прикладные исследования и проводимые для этих целей экспериментальные работы, направленные на получение знаний по всем аспектам природных процессов, происходящих на морском дне и в его недрах, в водной толще и атмосфере. … Экологическое право России: словарь юридических терминов

    Морские научные исследования - В целях настоящего Федерального закона морские научные исследования во внутренних морских водах и в территориальном море (далее морские научные исследования) фундаментальные или прикладные исследования и проводимые для этих исследований… … Официальная терминология

    Морские научные исследования в исключительной экономической зоне РФ - морские научные исследования в исключительной экономической зоне (далее морские научные исследования) фундаментальные или прикладные исследования и проводимые для этих исследований экспериментальные работы, направленные на получение знаний по… … Официальная терминология

    Морские научные исследования на континентальном шельфе - (далее морские научные исследования) фундаментальные или прикладные исследования и проводимые для этих исследований экспериментальные работы, направленные на получение знаний по всем аспектам природных процессов, происходящих на морском дне и в… … Официальная терминология

Книги

  • Фундаментальные и прикладные исследования на микротроне , Ципенюк Юрий Михайлович. В книге обобщаются результаты теоретического исследования процесса ускорения электронов в классическом круговом и разрезном микротронах, результаты экспериментов по проверке теоретических…

Фундаментальная наука - это наука, имеющая своей целью создание теоретических концепций и моделей, практическая применимость которых неочевидна 1. Задачей фундаментальных наук является познание законов, управляющих поведением и взаимодействием базисных структур природы, общества и мышления. Эти законы и структуры изучаются в «чистом виде», как таковые, безотносительно к их возможному использованию. У фундаментальной и прикладной науки различные методы и предмет исследования, различные подходы и угол зрения на социальную действительность. У каждой из них свои критерии качества, свои приемы и методология, свое понимание функций ученого, своя собственная история и даже своя идеология. Иными словами, свой мир и своя субкультура.

Естествознание - пример фундаментальной науки. Оно направлено на познание природы, такой, как она есть сама по себе независимо от того, какое приложение получат его открытия: освоение космоса или загрязнение окружающей среды. И никакой другой цели естествознание не преследует. Это наука для науки, т.е. познания окружающего мира, открытия фундаментальных законов бытия и приращения фундаментальных знаний.

Непосредственная цель прикладных наук -- применение результатов фундаментальных наук для решения не только познавательных, но и практических проблем. Поэтому здесь критерием успеха служит не только достижение истины, но и мера удовлетворения социального заказа. Как правило, фундаментальные науки опережают в своём развитии прикладные, создавая для них теоретический задел. В современной науке на долю прикладных наук приходится до 80--90% всех исследований и ассигнований. Действительно, фундаментальная наука составляет только малую часть общего объема научных исследований.

Прикладная наука - это наука, направленная на получение конкретного научного результата, который актуально или потенциально может использоваться для удовлетворения частных или общественных потребностей. 2.Важную роль выполняют разработки, которые переводят результаты прикладных наук в форму технологических процессов, конструкций, социоинженерных проектов. К примеру, пермская система стабилизации трудового коллектива (СТК) поначалу разрабатывалась в рамках фундаментальной социологии, опираясь на ее принципы, теории, модели. После этого ее конкретизировали, придали ей не только законченную форму и практическую форму, но определили сроки реализации, необходимые для этого финансовые и кадровые ресурсы. На прикладной стадии систему СТК неоднократно обкатывали не ряде предприятий СССР. Лишь после этого она получила вид практической программы и была готова к широкому распространению (стадия разработки и внедрения).

К фундаментальным исследованиям относятся экспериментальные и теоретические исследования, направленные на получение новых знаний без какой-либо конкретной цели, связанной с использованием этих знаний. Их результат -- гипотезы, теории, методы и т.п. Фундаментальные исследования могут завершаться рекомендациями по постановке прикладных исследований для выявления возможностей практического использования полученных результатов, научными публикациями и т.д.

Национальным научным фондом США дано такое определение понятия фундаментального исследования:

Фундаментальные исследования -- это часть научно-исследовательской деятельности, направленная на пополнение общего объема теоретических знаний... Они не имеют заранее определенных коммерческих целей, хотя и могут осуществляться в областях, интересующих или способных заинтересовать в будущем бизнесменов-практиков.

Фундаментальная и прикладная науки - два совершенно разных типа деятельности. Вначале, а это происходило в античные времена, расстояние между ними было незначительным и почти все, что открывалось в сфере фундаментальной науки сразу же или в короткие сроки находило применение на практике. Архимед открыл закон рычага, который немедленно был использован в военном и инженерном деле. А древние египтяне открывали геометрические аксиомы, в буквальном смысле не отрываясь от земли, поскольку геометрическая наука возникла из нужд земледелия. Постепенно расстояние увеличивалось и сегодня достигло максимума. На практике воплощает менее 1% открытий, сделанных в чистой науке. В 1980-е годы американцы провели оценочное исследование (цель таких исследование - оценка практической значимости научных разработок, их эффективности). Более 8 лет дюжина исследовательских групп анализировали 700 технологических инноваций в системе вооружений. Результаты ошеломили публику: у 91% изобретений в качестве источника значится предшествующая прикладная технология, и только у 9% - достижения в сфере науки. Причем из них лишь у 0,3% источник лежит в области чистых (фундаментальных) исследований.

Фундаментальная наука занимается исключительно приращением нового знания, прикладная -- только приложением апробированного знания. Добывание нового знания -- это авангард науки, апробация нового знания-- ее арьергард, т.е. обоснование и проверка однажды добытых знаний, превращение текущих исследований в «твердое ядро» науки. Практическое приложение -- это деятельность по применению знаний «твердого ядра» к реальным жизненным проблемам. Как правило, «твердое ядро» науки отображается в учебниках, учебных пособиях, методических разработках и всевозможных руководствах.

Один из главных признаков фундаментального знания -- его интеллектуальность. Как правило, оно обладает статусом научного открытия и является приоритетным в своей области. Иначе говоря, считается образцовым, эталонным.

Фундаментальное знание в науке -- сравнительно небольшая часть проверенных на опыте научных теорий и методологических принципов либо аналитических приемов, которыми пользуются ученые в качестве руководящей программы. Остальное знание -- результат текущих эмпирических и прикладных исследований, совокупность объяснительных моделей, принятых пока что в качестве гипотетических схем, интуитивных концепций и так называемых «пробных» теорий.

Фундамент классической физики раньше составляла механика Ньютона, и вся масса практических экспериментов в то время базировалась именно на ней. Законы Ньютона служили как бы «твердым ядром» физики, а текущие исследования лишь подтверждали и уточняли существующее знание. Позже была создана теория квантовой механики, которая стала фундаментом современной физики. Она по-новому объясняла физические процессы, давала иную картину мира, оперировала другими аналитическими принципами и методологическими инструментами.

Фундаментальную науку за то, что она развивается главным образом в университетах и академиях наук, называют еще академической. Университетский профессор может подрабатывать в коммерческих проектах, даже трудиться на полставке в частной консультативной или исследовательской фирме. Но он всегда остается университетским профессором, немного свысока поглядывающим на тех, кто постоянно занимается маркетинговыми или рекламными обследованиями, не поднимаясь до открытия новых знаний, кто никогда не публиковался в серьезных академических журналах.

Таким образом, у социологии, занимающейся приращением новых знаний и глубинным анализом явлений, существует два названия: термин «фундаментальная социология» указывает на характер получаемого знания, а термин «академическая социология» - на место в социальной структуре общества.

Фундаментальные идеи ведут к революционным изменениям. После их обнародования научное сообщество уже не может думать и изучать по-старому. Мировоззренческие установки, теоретическая ориентация, стратегия научного поиска, а иногда и сами методы эмпирической работы трансформируются самым кардинальным образом. Перед взором ученых как бы открывается новая перспектива. На фундаментальные исследования тратятся огромные суммы денег, ибо только они, в случае успеха, пусть и достаточно редкого, приводят к серьезному сдвигу в науке.

Фундаментальная наука имеет своей целью познание объективной действительности такой, как она есть сама по себе. Прикладные науки имеют совершенно другую цель - изменение природных объектов в нужном для человека направлении. Именно прикладные исследования непосредственно связаны с инженерией и технологией. Фундаментальные исследования обладают относительной независимостью от прикладных разработок.

Прикладная наука отличается от фундаментальной (а в нее необходимо включать теоретическое и эмпирическое знание) практической направленностью. Фундаментальная наука занимается исключительно приращением нового знания, прикладная -- исключительно приложением апробированного знания. Добывание нового знания -- это авангард или периферия науки, апробация нового знания -- это его обоснование и проверка, превращение текущих исследований в «твердое ядро» науки, приложение - это деятельность по применению знаний «твердого ядра» к практическим проблемам. Как правило, «твердое ядро» науки отображается в учебниках, учебных пособиях, методических разработках и всевозможных руководствах.

Перевод фундаментальных результатов в прикладные разработки могут осуществлять одни и те же ученые, разные специалисты либо для этого создаются особые институты конструкторские бюро, внедренческие фирмы и компании. К прикладным исследованиям относят такие разработки, на "выходе" у которых стоит конкретный заказчик, выплачивающий немалые деньги за готовый результат. Поэтому конечный продукт прикладных разработок представлен в виде изделий, патентов, программ и т. д. Считают, что ученые, чьи прикладные разработки не покупают, должны пересмотреть свои подходы и сделать продукцию конкурентоспособной. К представителям фундаментальной науки подобных требований никогда не выдвигают.

Направления изысканий, лежащие в основе самых разных научных дисциплин, которые затрагивают все определяющие условия и закономерности и руководят абсолютно всеми процессами, - это фундаментальные исследования.

Два вида исследования

Любая область познания, которая требует теоретических и экспериментальных научных изысканий, поиска закономерностей, отвечающих за строение, форму, структуру, состав, свойства, а также за протекание процессов, связанных с ними, является фундаментальной наукой. Это касается базовых принципов большинства естественнонаучных и гуманитарных дисциплин. Фундаментальные исследования служат расширению концептуальных и теоретических представлений о предмете изучения.

Но есть и другой вид познания предмета. Это прикладные исследования, которые направлены на решение социальных и технических задач практическим путём. Наука пополняет объективные знания человечества о действительности, вырабатывая теоретическую их систематизацию. Её целью является объяснение, описание и предсказания тех или иных процессов или явлений, где она открывает законы и на их отражает действительность. Однако есть науки, направленные на практическое применение тех постулатов, которые предоставляют фундаментальные исследования.

Подразделение

Это деление на прикладные и фундаментальные исследования довольно условное, потому что последние очень часто имеют высокую практическую ценность, а на основе первых тоже достаточно часто получаются научные открытия. Изучая основные закономерности и выводя общие принципы, учёные практически всегда имеют в виду дальнейшее применение своих открытий непосредственно на практике, и не очень важно, когда это случится: растопить шоколад прямо сейчас при помощи СВЧ-излучения, как Перси Спенсер, или подождать почти пятьсот лет с 1665 года до полётов к соседним планетам, как Джованни Кассини с его открытием Большого красного пятна на Юпитере.

Грань между тем, что представляют из себя фундаментальные исследования и прикладные, почти иллюзорна. Любая новая наука поначалу развивается как фундаментальная, а затем переходит в практические решения. Например, в квантовой механике, возникшей как некий почти абстрактный раздел физики, никто в первый момент не увидел ничего полезного, но не прошло и десятилетия, как всё изменилось. Тем более ядерную физику никто не предполагал так скоро и так широко использовать на практике. Прикладные и фундаментальные исследования крепко взаимосвязаны, последние являются основой (фундаментом) для первых.

РФФИ

Отечественная наука работает в хорошо организованной системе, и Российский фонд фундаментальных исследований в её структуре занимает одно из самых значимых мест. РФФИ охватывает все стороны сообщества, что способствует поддержанию самого активного научно-технического потенциала страны и обеспечивает учёных финансовой поддержкой.

Нужно специально отметить, что Российский фонд фундаментальных исследований использует конкурсные механизмы для финансирования отечественных научных исследований, и там оценивают все работы настоящие эксперты, то есть наиболее уважаемые члены научного сообщества. Основной задачей РФФИ является проведение отбора посредством конкурса на лучшие научные проекты, предоставленные учёными в инициативном порядке. Далее с его стороны следует организационное и финансовое обеспечение выигравших конкурс проектов.

Сферы поддержки

Фонд фундаментальных исследований оказывает поддержку учёным во многих областях знаний.

1. Информатика, механика, математика.

2. Астрономия и физика.

3. Науки о материалах и химия.

4. Медицинская наука и биология.

5. Науки о Земле.

6. и обществе.

7. Вычислительные системы и информационные технологии.

8. Фундаментальные основы инженерных наук.

Именно поддержка Фонда движет отечественные фундаментальные, прикладные исследования и разработки, поэтому теория и практика взаимно дополняют друг друга. Только в их взаимодействии находится общее научное познание.

Новые направления

Фундаментальные и прикладные научные исследования меняют не только базовые модели познания и стили научного мышления, но и всю научную картину мира. Происходит это всё чаще, а "виновниками" тому являются никому не известные ещё вчера новые направления фундаментальных исследований, которые век от века всё быстрее находят своё применение в разработках прикладных наук. Если внимательно рассмотреть можно увидеть поистине революционные преобразования.

Именно они характеризуют разработку всё большего количества новых направлений в прикладных исследованиях и новых технологиях, которые обусловлены резко набирающими темпы фундаментальными исследованиями. И всё быстрее они воплощаются в реальную жизнь. Дайсон писал, что ранее требовалось 50-100 лет пути от фундаментального открытия до широкомасштабных технологических применений. Теперь время словно сжалось: от фундаментального открытия до внедрения в производство процесс происходит буквально на глазах. И всё потому, что изменились сами фундаментальные методы исследования.

Роль РФФИ

Сначала проводится отбор проектов на конкурсной основе, затем разрабатывается и утверждается порядок рассмотрения всех представленных на конкурс работ, проводится экспертиза предложенных на конкурс исследований. Далее осуществляется финансирование прошедших отбор мероприятий и проектов с последующим контролем использования выделенных средств.

Налаживается и поддерживается международное сотрудничество в сфере научных фундаментальных исследований, сюда включено и финансирование совместных проектов. Осуществляется подготовка, выпуск информационных материалов об этой деятельности, и они широко распространяются. Фонд активно участвует в формировании государственной политики в научно-технической области, что ещё более сокращает путь от фундаментального исследования до появления технологии.

Цель фундаментальных исследований

Развитие науки всегда закреплено социальными преобразованиями в общественной жизни. Технология - вот главная цель каждого фундаментального исследования, поскольку именно она движет вперёд цивилизацию, науку и искусство. Нет научных исследований - нет прикладного применения, стало быть, нет и технологических преобразований.

Далее по цепочке: развитие промышленности, развитие производства, развитие общества. В фундаментальных исследованиях заложена вся структура познания, которая разрабатывает базисные модели бытия. В классической физике исходной базовой моделью являются самые простые представления об атомах как строении вещества плюс законах о механике материальной точки. Отсюда физика и начала своё развитие, порождая всё новые базисные модели и всё более сложные.

Слияние и разделение

Во взаимоотношениях прикладных и фундаментальных исследований наиболее важным является общий процесс, движущий развитие познания. Наука идёт всё более широким фронтом, с каждым днём усложняя свою и без того непростую структуру, подобную живой высокоорганизованной сущности. В чём же тут подобие? Любой организм имеет множество систем и подсистем. Одни поддерживают организм в деятельном, активном, живом состоянии - и только в этом их функция. Другие направлены на взаимодействие с окружающим миром, так сказать - на метаболизм. В науке точно так же всё происходит.

Есть подсистемы, поддерживающие в деятельном состоянии саму науку, а есть другие - они ориентируются на внешние научные проявления, как бы включают её в посторонние виды деятельности. Фундаментальные исследования направлены на интересы и потребности науки, на поддержку её функций, и достигается это путём развития методов познания и обобщающих идей, которые и являются основанием бытия. Именно это подразумевается под понятием "чистая наука" или "познание ради познания". Прикладные же исследования всегда направлены вовне, они ассимилируют теорию с практической деятельностью человека, то есть - с производством, изменяя таким образом мир.

Обратная связь

Новые фундаментальные науки тоже разрабатываются на базе прикладных исследований, хотя этот процесс сопряжён с трудностями теоретического познавательного плана. Обычно в фундаментальных исследованиях содержится масса приложений, и совершенно невозможно предположить, на каком из них произойдёт следующий прорыв в развитии теоретического знания. Примером может послужить интересная ситуация, которая сегодня складывается в физике. Ведущая её фундаментальная теория в области микропроцессов - квантовая.

Она радикально изменила весь образ мышления в физических науках двадцатого столетия. У неё огромное количество разнообразных приложений, каждое из которых пытается "прикарманить" всё наследство этого раздела теоретической физики. И уже многие на этом пути преуспевали. Приложения квантовой теории одно за другим создают самостоятельные направления фундаментальных исследований: физики твёрдого тела, элементарных частиц, а также физика с астрономией, физика с биологией и много ещё впереди. Как тут не сделать вывод, что квантовая механика радикально изменила физическое мышление.

Разработка направлений

Разработками фундаментальных исследовательских направлений история науки чрезвычайно богата. Это и классическая механика, раскрывающая основные свойства и закономерности движения макротел, и термодинамика с её исходными законами тепловых процессов, и электродинамика с электромагнитными процессами, о квантовой механике уже было несколько слов сказано, а сколько надо было бы рассказать о генетике! И это далеко не оконченный длинный ряд новых направлений фундаментальных исследований.

Самое интересное то, что практически каждая новая приводила к мощному всплеску разнообразных прикладных исследований, и области познания были охвачены практически все. Как только та же классическая механика, например, приобрела свои основы, её интенсивно начали применять в исследованиях самых разных систем и объектов. Отсюда возникли механика непрерывных сред, механика твёрдого тела, гидромеханика и множество других направлений. Или взять новое направление - организмику, разработкой которой занимается специальная академия фундаментальных исследований.

Конвергенция

Аналитики утвержают, что академические и промышленные исследования последних десятилетий значительно сблизились, и по этой причине увеличилась доля фундаментальных разработок в частных университетах и предпринимательских структурах. Технологический порядок знания сливается с академическим, поскольку последний связан с созданием и переработкой, теорией и производством знания, без чего невозможны ни поиск, ни упорядочение, ни использование уже имеющихся знаний в прикладных целях.

Каждая наука с её фундаментальными исследованиями оказывает самое существенное воздействие на мировоззрение современного общества, изменяя даже основные понятия философского мышления. Наука сегодня должна иметь ориентиры в будущем, как можно более дальнем. Прогнозы, конечно, не могут быть жёсткими, но сценарии развития разрабатываться должны обязательно. Один из них обязательно реализуется. Здесь главное - потенциальные последствия просчитать. Вспомним создателей атомной бомбы. В исследованиях всего самого неизвестного, самого сложного, самого интересного прогресс неминуемо движется вперёд. Важно правильно определить цель.

Фундаментальные исследования включают те исследования в сфере естественных, технических и общественных наук, которые направлены на выявление и изучение основополагающих законов и явлений природы, общества и мышления, имеют целью как приращение новых знаний, которые имеют существенную универсальность и всеобщность, так и использование этих знаний в практической деятельности человека. Результаты фундаментальных исследований создают основу научного знания в виде основополагающих принципов и законов, базисных теорий основных явлений, процессов и свойств объективного мира, образуют фундамент актуальной научной картины мира.

Среди фундаментальных исследований различают собственно фундаментальные ("чистые") и целенаправленные фундаментальные исследования. Первые из них направлены на открытие новых законов природы, установление новых принципов, выявление новых связей и отношений между явлениями и объектами реальности. Этим исследованием свойственна минимальная неопределенность получения позитивных результатов (5-10 % общего числа исследований).

Целенаправленные фундаментальные исследования , реально "материализуя" положение относительно превращения науки в непосредственную производительную силу общества, выявляют научные, технические, технологические и экономические возможности и конкретные пути проработки и практического применения в общественной практике принципиально новых способов и средств производства продукции, материалов, новых источников энергии, способов и средств преобразования и передачи информации. Такие исследования проводятся в относительно узких направлениях, опираются на имеющийся задел теоретических и эмпирических знаний, ориентируются по большей части на перспективные потребности общества. Вероятность получения результатов, которые практически применяются составляет 50-70 %.

Открытия в отраслях фундаментальных исследований на протяжении последних десятилетий преимущественно произошли в таких научных направлениях: изучение космоса, науки о Земле, ядерная физика и физика элементарных частиц, физика плазмы, радиоэлектроника, оптика, магнетизм и физика твердого тела, механика и автоматика, химия и материаловедение, биология и медицина.

Сегодня в сферу фундаментальных исследований привлекаются все новые объекты природы и техники, изучение которых происходит как на пути проникновения во все более глубокие области строения микромира, космоса, Мирового океана, континентов, земных недр, так и в направлении познания все более сложных форм организации материи (в том числе биосферной), выявления новых свойств, явлений и закономерностей, присущих этим объектам, установка возможностей их использования в общественной практике. В настоящее время именно фундаментальным исследованиям принадлежит ведущая роль в решении проблем современной глобалистики, прежде всего экологической проблематики. Растет значение фундаментальных исследований также и в сфере социально-экономических институций науки.

Прикладные исследования пользуются как бы тем плацдармом, на котором создаются и отрабатываются образцы техники и технологии и с которого начинается их внедрение в производство. По своему характеру и направленности они выступают действенным фактором реального процесса превращения науки в непосредственную производительную силу общественного развития.

Современные прикладные исследования по большей части направлены на создание новых и усовершенствование существующих технических средств, технологий, материалов, энергетических конструкций и тому подобное. Они опираются на уже известные законы, явления и свойства объектов материального мира, в том числе объектов "второй природы" (техники). При этом прикладные исследования основываются не только на результатах фундаментальных исследований, но и также на производственной информации. Ярко выраженная направленность прикладных исследований определяет большую вероятность получения практически важных результатов, которая составляет 80-90 %.

Важным функциональным звеном в системе "наука- производство" являются разработки - непосредственное использование результатов фундаментальных и прикладных исследований в производстве. Они включают проектирование, конструирование, создание опытного образца, разработку первичной технологии производства, то есть являются началом внедрения научных достижений в социальную практику. Национальный научный фонд США рассматривает разработки как систематическое использование научного знания, направленного на производство полезных материалов, механизмов, систем и методов, включая проектирование и усовершенствование "прототипов" и процессов. Одним словом, разработки являются своеобразным "симбиозом" элементов науки и производства. Вероятность получения конечного позитивного результата на стадии разработок возрастает до 95-97 %.

Революционное воздействие на науку сегодня часто оказывают не только достижения фундаментальных дисциплин, но и открытия, которые возникают в русле прикладных исследований и разработок. Обратное воздействие последних на фундаментальное знание нередко порождает принципиально новые представления о действительности, изменениях научной картины мира. Например, в последние годы произошла определенная перестройка научной картины мира после учета представлений о самоорганизации физических систем. Именно это было обусловлено результатами таких прикладных исследований, как выявление эффектов неравновесных фазовых переходов и образования дисипативних структур.

Таким образом, сегодня можно утверждать: наука все более выразительно превращается в производительную силу общества, воплощаясь в технику и технологические процессы. На этом пути наука дифференцировалась на фундаментальную и прикладную. Фундаментальная составляющая науки , выражая степень ее зрелости, предоставляет производству такие знания, которые, с одной стороны, отражают фундаментальную закономерность природы и развития объектов реальности, а с другой - дает возможность реализовать регулятиви прогресса общественного производства. Прикладная ветвь достаточно развитых научных знаний непосредственно отображает процесс преобразования науки в производительную силу, систематического ее воздействия на всестороннюю организацию производства. Характерно, что в современную эпоху научно-технического прогресса растет роль прикладных исследований, которые все больше требуют коррелятивной связи с результатами фундаментальных научных исканий.

Соотношение между фундаментальными и прикладными (включая разработки) исследованиями образует достаточно динамическую систему с неустойчивыми, подвижными границами. В целом чем более приближенной во времени и в социальном понимании, более конкретной есть превращающая цель, которая стоит перед фундаментальными исследованиями, тем они ближе сталкиваются с прикладными исследованиями. Однако особенность и приоритетность фундаментальных исследований заключается прежде всего в том, что их результаты оцениваются в зависимости от того, достигнуто ли в конечном итоге существенное приращение наших знаний в материальном мире и его законах. Иначе говоря, фундаментальные исследования имеют особенное значение для развития науки и культуры вообще, с чем непременно и коррелируют сдвиг в оптимизации общественной практики .

В условиях современной научно-технической революции, когда возникают новые и междисциплинарные отрасли знания, чрезвычайно усиливаются процессы дифференциации и интеграции наук, научных направлений, методов и средств познания, особенное значение приобретает вопрос относительно корректного разграничения фундаментальных и прикладных наук. Академик Б. М. Кедров рассматривает фундаментальные науки с трех исторически установившихся точек зрения. Согласно первой из них, которая отражает объективный генетический подход, фундаментальными прежде всего являются естественные науки, которые изучают качественно своеобразные формы движения (организации) материи, их развитие много в чем создало фундамент для возникновения гуманитарных и общественных наук.

Согласно со второй точкой зрения, которая воплощает структурный исторический подход, к фундаментальным наукам относятся математика, астрономия, физика, химия, биология, геология, география, история, философия и тому подобное, которые возникли в древние времена и составляют "краеугольные камни всего знания", являются стержневыми при создании междисциплинарных наук (астрофизика, геохимия, почвоведение, биосферология и тому подобное).

Соответственно с третьей точкой зрения, которая отвечает структурному функциональному подходу и является наиболее распространенной в настоящее время, к фундаментальным наукам принадлежат теоретические - точные ("гвардейские") и "чистые" науки, направленные на выявление законов природы, общества и мышления. Задание прикладных наук заключается в применении этих законов в своих специфических исследованиях.

МЕТОД НАУЧНОГО ПОЗНАНИЯ

«Факты в науке не самое важное дело... Наука никогда не имеет голый эмпирический характер, главное в ней - метод”. Эти глубинного содержания слова принадлежат оригинальному российскому философу и писателю М. М. Страхову, он привел их в своем труде "О методе естественных наук и значении их в общем образовании" (1865). Вопросы природоведения были в центре научных интересов Страхова, который рассматривал мир как гармоническое целое, как своеобразную "иерархию существ и явлений".

Научный метод (от греч. путь, способ исследования, обучения, изложения) - это система правил и приемов подхода к изучению явлений и закономерностей природы, общества и мышления; путь, способ достижения определенных результатов в познании и практике; прием теоретического исследования и практического осуществления чего-либо, что выходит из знания закономерности развития объективной действительности и предмета, явления, процесса, которые исследуются. Знание научного метода, его возможностей дает возможность определить правильный путь изучения объектов и явлений, помогает исследователю выбрать существенное и отсеять второстепенное, очертить путь восхождения от известного к неизвестному, от простого к сложному, от единичного к частичному и общему, от исходных положений к универсальному и тому подобное. В конечном итоге, это - способ действия исследователя в конкретной отрасли знания, который опирается на известные принципы и направлен на снискание нового научного знания; своеобразный алгоритм действий при получении новых данных или обработке информации, который обеспечивает контролируемость познавательной деятельности, воспроизводимость результатов и их общенаучность.

Еще Ф. Бекон настаивал на особенной важности научного метода, подчеркивая, что малоодаренный человек, который овладел правильным методом, способен сделать больше, чем гений, не знакомый с этим методом. Через одиннадцать лет после смерти Бекона был опубликован труд Р. Декарта "Рассуждение о методе", который содержал достаточно четкое теоретическое обоснование роли метода в познании.

В истории науки метод был призван освободить познание от случайностей, страстей и слабости индивидуального человеческого подхода. В наше время все более выразительно проявляется зависимость познавательного процесса от особенностей субъекта, усвоенного им стиля мышления. Дело в том, что пока наука занималась четко выделенными предметами, можно было надеяться на провомерность построения четкой логической схемы существенных взаимосвязей объекта, который изучается, и поставить ее на крепкий фундамент эксперимента. В комплексных же проблемах современной науки, символом которых стал термин "сложная система", логические связи не удается описать до конца. В анализе географических данных, в частности, практически невозможно построить замкнутую логическую схему, которую можно однозначно и убедительно сопоставить с результатами определенного эксперимента. Именно здесь получает приоритет личный опыт и интуиция исследователя, использование удачных аналогий решения подобных заданий и тому подобное. В данном контексте исторически закономерно вырос интерес ученых к методологии науки, а это - признак того, что выбор метода исследований перестал казаться чем-то бесспорным, как будто независимым от исследовательской деятельности, прописанным самой наукой.

Определяя значение научного метода, стоит вспомнить слова известного математика Л. Карно: "Науки подобны величественной реке, по течению которой легко направляться после того, как она приобретет определенную правильность, но если желают пройти по реке к ее истоку, то его нигде не находят, ибо его нигде нет, в определенном понимании виток рассеян по всей поверхности Земли».

Выдающийся философ и один из основателей географии И. Кант говорил: если мы хотим что-то назвать методом, то это должно быть способом действия соответственно основоположениям. Следовательно, метод есть такой способ действия, который осуществляется соответственно "основоположениям", то есть имеет фундамент в соответствующих теоретических принципах. Именно метод выступает способом подхода и общим направлением действий в решении определенной группы заданий и вытекает из осмысленного применения необходимой системы принципов. Заметим, что саму эту систему принципов можно считать методом, если она выступает непосредственно как регулятор действий при решении конкретной группы заданий. Если же данную систему принципов рассматривать не со стороны их практического функционирования в деятельности исследователя, а со стороны теоретического обоснования - речь уже пойдет не о методе как таковом, а о методологии. Именно последняя, по существу, является теорией метода соответствующей познавательной деятельности. Но это теория особого рода, которая обосновывает и регулирует правила и нормативы труда исследователя (субъекта) относительно теоретического воссоздания сущности объекта познания.

По мнению российского академика И. Т. Фролова (1981), общий метод каждой науки является итогом познания законов развития объекта этой науки, он является результатом осознания форм, в которых двигается содержание науки . Следовательно, метод науки никоим образом нельзя понимать как несколько формальное, как искусственные приемы и формы операции эмпирическим материалом науки, простой набор инструментов познания, логический аппарат, безразличный вроде бы в своей сущности к содержанию науки, ее объективным законам. Метод, по утверждению Гегеля, "не внешняя форма, а душа и понятие содержания".

Именно метод науки в логической форме фиксирует общие законы развития объекта науки. Эти законы и составляют то первобытное, определяющее, которое является исходным в построении ее метода. Они разрабатываются в ходе исторического развития каждой науки, в меру познания объективных закономерностей и углубления знаний о них. Следовательно отличие между методом и содержанием (теорией) в науке достаточно относительно. Метод и теория науки как форма и содержание является двумя сторонами единого целого. Поэтому метод определяет основные исходные позиции для последующего познания еще до того, как оно разворачивается в своей конкретике. Более того, метод существенным образом определяет и результаты познания. Ограниченный, незрелый метод предопределяет адекватные оценки самой науки, погрешности ее выводов.

В целом научный метод представляет собой реальную форму человеческого мышления, конкретного научного исследования, которое всегда имеет определенное содержание и значимость, непременно предопределяется конкретно-историческим уровнем познания и практики. Понятно, что, научный метод не является чем-то абсолютным, навсегда данным атрибутом познавательной теоретической деятельности. Он органически связан с системой научных теорий, понятий, категорий и законов, которые, в свою очередь, открываются и развиваются посредством научного метода, фундамент которого составляют предмет и цель познавательной деятельности.

Будучи важным орудием научного познания, могучим двигателем науки, метод выступает также объединяющим основанием для развития науки, ее синтеза, который включает в себя ретроспективные характеристики предмета (объекта) познания. В то же время научный метод представляет собой важное средство повышения эффективности научного познания, его интенсификации. В конечном итоге, такого рода регулятивная нормативная функция научного метода предоставляет конкретной исторической системе научного знания способность к самодвижению и развитию, к расширенному воссозданию научных знаний (В. П. Воронцов, О. Т. Москаленко, 1986).

Структуру научного метода можно представить в таком виде:

1) мировоззренческие положения и теоретические принципы, которые характеризуют содержание познания; 2) методические приемы, которые отвечают специфике предмета, который изучается; 3) приемы, что применяются для фиксации фактов, направления хода исследования, оформления его результатов.

Таким образом, метод воплощает в себе определенную взаимосвязь теории, методики и техники исследования, которые связаны между собой достаточно гибко и подвижно. Каждый из этих элементов при сохранении ведущей, цементирующей роли теории в функциональном отношении владеет определенной самостоятельностью. Поэтому вполне обоснованной является оценка метода как системы регулятивных принципов познавательной деятельности.

Высшим уровнем познания каждой науки, как отмечалось выше, есть создание системы теоретического знания, общей теории предмета действительности, которая изучается. Поэтому самой важной методологической проблемой каждой науки должно быть определение путей последующего развития ее теоретической составляющей, которая, в свою очередь, выступает наиболее эффективным и конструктивным средством развития метода данной науки.

Действительно, в науке, познавательной деятельности чрезвычайно важное значение имеют методы исследования, которые, к сожалению, до сих пор, в частности в географии, не приобрели однозначного толкования в понимании их эвристической природы и содержательных характеристик. Но именно в методах познания четко выделяются упорядоченность, систематичность, целенаправленность познавательных действий, осуществляются контроль за исследовательскими процедурами, согласовываются установленные факты и зависимости.

Любой метод научного познания имеет как будто двухкомпонентное строение. Образовывая последнее, правила и стандарты учитывают специфику объекта, который изучается, и в то же время регулятивную специфику логики познавательной деятельности. Пропорциональные соотношения этих компонентов в каждом конкретном методе разные. На эмпирическом уровне познания преобладают методы, рассчитанные на чувственное воссоздание объекта. По мере перехода к теоретическому познанию пропорции изменяются в интересах методов, которые учитывают логические требования.

Классификация научных методов и сегодня остается дискуссионным вопросом, что связано с противоречивостью критериев и принципов, которые предлагаются. В частности, по характеру и роли в познании выделяют методы-подходы и методы-приемы (конкретные правила, операции исследований); по функциональному назначению различают методы эмпирических и теоретических исследований.

Одним словом, наука много в чем является своеобразным единством знания и познавательной деятельности. Знание растет из деятельности, но сама научная деятельность невозможна без знания. Эта антиномия решается в методе, который, будучи живым знанием -действием, наиболее адекватно выражает деятельную сторону науки. Единство знания и деятельности в науке находит свое конкретное воплощение в единстве ее теории и метода.

Научный метод возникает на фундаменте существующей системы научного знания, достигнутого им уровня обобщения практики познания. Но в своем развитии научный метод выходит за пределы этой системы, приводит к его изменению и созданию нового. Научный метод по своей природе революционен, направлен на приращение знания, переход научных знаний на новый качественный уровень своего развития. Однако он не является продуктом спонтанной деятельности ума исследователя, оторванной от жизненной практики. Научный метод определяется природой предмета (объекта), который изучается, и служит конкретной практической цели, организовуя и направляя исследовательский процесс. В зависимости от степени сложности познавательного задания изменяются и методы его решения, используются разнообразные исследовательские приемы, теоретические обобщения, формальные логические средства, виды наблюдений, экспериментов и тому подобное. В любой отрасли науки при условиях процесса интеграции научного знания, который достаточно быстро развивается, обычно применяется не один какой-либо метод, а целая система методов, познавательных процедур и приемов, которые возникли и развивались не только в смежных, но и в далеких отраслях знания. Это прежде всего касается географической науки, в частности физической географии, объекты исследования которой отличаются чрезвычайной сложностью своей природы и пространственно-временной "траекторией" существования.

© 2024 skudelnica.ru -- Любовь, измена, психология, развод, чувства, ссоры