Фаза раствора с более высокой концентрацией веществ. Свойства разбавленных растворов

Главная / Измена жены

О.С.ЗАЙЦЕВ

УЧЕБНАЯ КНИГА ПО ХИМИИ

ДЛЯ УЧИТЕЛЕЙ СРЕДНИХ ШКОЛ,
СТУДЕНТОВ ПЕДАГОГИЧЕСКИХ ВУЗОВ И ШКОЛЬНИКОВ 9–10 КЛАССОВ,
РЕШИВШИХ ПОСВЯТИТЬ СЕБЯ ХИМИИ И ЕСТЕСТВОЗНАНИЮ

УЧЕБНИКЗАДАЧНИКЛАБОРАТОРНЫЙ ПРАКТИКУМНАУЧНЫЕ РАССКАЗЫ ДЛЯ ЧТЕНИЯ

Продолжение. См. № 4–14, 16–28, 30–34, 37–44, 47, 48/2002;
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
24, 25-26, 27-28, 29, 30, 31, 32, 35, 36, 37, 39, 41, 42, 43, 44, 46, 47/2003;
1, 2, 3, 4, 5, 7, 11, 13, 14, 16, 17, 20, 22, 24, 29, 30, 31, 34, 35, 39, 41, 42, 45/2004;
2, 3, 5, 8, 10, 16, 17/2005;
1, 2, 10, 12/2006

§ 8.4. Дисперсное (коллоидное)
состояние вещества

Организмы животных и растений, гидросфера, земная кора и недра, космическое пространство часто представляют собой вещества в раздробленном, или, как говорят, дисперсном, состоянии. Большинство веществ окружающего нас мира существует в виде дисперсных систем: почвы, ткани живых организмов, пищевые продукты и др. Химия дисперсного состояния довольно новая наука, но она почти не изучается ни в школе, ни в нехимических высших учебных заведениях, хотя эта научная область имеет не меньшее значение для нашей жизни, чем химия комплексных и органических соединений. Читая эту главу, постоянно думайте, когда и где вы встречаете описываемое явление в природе, быту или производстве, а также, как можно его использовать.

Спонсор публикации статьи интернет-магазин "Butik-Vera" в Москве. Онлайн распродажи женской одежды - блузы и топы, платья из кружева , кардиганы, лосины, шорты и другая одежда, обувь и аксессуары, а также одежда больших размеров. Доступные цены, большой выбор, гарантия качества, огромные скидки, новинки каждый день, индивидуальный пошив. Посмотреть каталог товаров, цены, контакты, условия доставки и сделать заказ Вы сможете на сайте, который располагается по адресу: http://www.butik-vera.ru.

Дисперсные системы – это системы, в которых мелкие частицы вещества, или дисперсная фаза , распределены в однородной среде (жидкость, газ, кристалл), или дисперсионной фазе (рис. 8.25).

Размер частиц дисперсной фазы характеризуется дисперсностью. В зависимости от нее дисперсные системы можно разделить на высокодисперсные , или собственно коллоидные , и низкодисперсные (грубодисперсные) .

Размер частиц низкодисперсных систем составляет 10 –3 мм и больше. Размер частиц высокодисперсных систем лежит в интервале 10 –6 –10 –4 мм (от 1 до 100 нм), что, как минимум, на порядок больше размера частиц в истинных растворах ( 10 –7 мм). Химия дисперсных систем изучает поведение вещества в сильно раздробленном, высокодисперсном состоянии, характеризующемся очень высоким отношением общей площади поверхности всех частиц к их общему объему или массе (степень дисперсности).

От названия коллоидных систем произошло название отдельной области химии – коллоидной. «Коллоидная химия» – традиционное название химии дисперсных систем и поверхностных явлений. Раньше коллоидами называли клееподобные вещества, теперь это высокодисперсные системы с сильно развитой поверхностью раздела фаз. Ниже мы будем использовать старые традиционные термины, понимая их современный смысл. Например, под выражением «коллоидный раствор» будем иметь в виду высокодисперсное состояние вещества в воде в качестве дисперсионной среды.

Важнейшая особенность дисперсного состояния вещества состоит в том, что энергия системы главным образом сосредоточена на поверхности раздела фаз. При диспергировании, или измельчении, вещества происходит значительное увеличение площади поверхности частиц (при постоянном суммарном их объеме). При этом энергия, затрачиваемая на измельчение и на преодоление сил притяжения между образующимися частицами, переходит в энергию поверхностного слоя – поверхностную энергию . Чем выше степень измельчения, тем больше поверхностная энергия. Поэтому область химии дисперсных систем (и коллоидных растворов) считают химией поверхностных явлений.

Коллоидные частицы настолько малы (содержат 10 3 –10 9 атомов), что не задерживаются обычными фильтрами, не видны в обычный микроскоп, не оседают под действием силы тяжести. Их устойчивость со временем снижается, т.е. они подвержены «старению». Дисперсные системы термодинамически неустойчивы и стремятся к состоянию с наименьшей энергией, когда поверхностная энергия частиц становится минимальной. Это достигается за счет уменьшения общей площади поверхности при укрупнении частиц (что может также происходить при адсорбции на поверхности частиц других веществ).

Свойства вещества в раздробленном, или дисперсном, состоянии значительно отличаются от свойств того же вещества, находящегося в недисперсном состоянии, т.е. в виде куска твердого тела или некоторого объема жидкости.

Так, давление пара воды над плоской поверхностью при 20 °С равно 2333 Па, но над каплями воды радиусом 1 мм оно выше на 0,003 Па, а над каплями радиусом
0,01 мм – на 0,3 Па. Кристаллический гидрат оксида алюминия Al 2 О 3 3Н 2 О (или
Al(ОН) 3) начинает терять воду при 200 °С, а в очень мелкораздробленном состоянии – при 100 °С. Золото в соляной кислоте не растворяется, однако в высокодисперсном состоянии легко переходит в раствор. Растворимость СаSО 4 в воде составляет
4,9 10 –3 моль/л, но для частиц СаSО 4 размером 2 10 –4 см она повышается до
1,5 10 –3 моль/л.

В связи с тем, что поверхностная энергия маленькой частицы выше, чем более крупной, термодинамические свойства их различны. Так, растворимость мельчайших кристалликов выше, чем больших, и происходит перенос вещества из высокодисперсной фазы в менее дисперсную, т.е. крупные кристаллы растут за счет растворения мелких. В этом самопроизвольном процессе
G < 0.

Давление пара над маленькой каплей выше, чем над большой, и большие капли вырастают за счет испарения маленьких (рис. 8.26). Поэтому в облаках образуются капли дождя, точно так же растут снежинки.

Рис. 8.26.
Схема переноса вещества из высокодисперсного
состояния в низкодисперсное

Вещество в дисперсном состоянии стремится поглотить другие вещества. Растворимость газов в каплях выше, чем в жидкости большого объема. Из-за того, что растворимость кислорода в капле воды высока, коррозия железа проходит даже без примесей в железе других веществ (рис. 8.27). Под каплей воды на поверхности железа коррозия проявляется в первую очередь у краев капли, где растворимость кислорода больше.

Существует несколько различных классификаций дисперсных систем: по размеру частиц, по фазовому состоянию дисперсной фазы и дисперсионной среды, по характеру взаимодействия частиц дисперсной фазы с веществом дисперсионной среды, по термодинамической и кинетической устойчивости дисперсных систем и т.п.

Классификация дисперсных систем по фазовому состоянию дисперсной фазы и дисперсионной среды приведена в таблице.

Таблица

Классификация дисперсных систем

Дисперсная фаза Дисперсионная среда Название системы Примеры
Газ Газ (Дисперсная система не образуется.)
Жидкость Пена Пена газированной воды, пузырьки газа в жидкости, мыльная пена
Твердое тело Твердая пена Пенопласт, микропористая резина, пемза, хлеб, сыр
Жидкость Газ Аэрозоль Туман, облака, струя из аэрозольного баллона
Жидкость Эмульсия Молоко, сливочное масло, майонез, крем, мазь
Твердое тело Твердая эмульсия Жемчуг, опал
Твердое тело Газ Аэрозоль, порошок Пыль, дым, мука, цемент
Жидкость Суспензия, золь (коллоидный раствор) Глина, паста, ил, жидкие смазочные масла с добавкой графита или MoS
Твердое тело Твердый золь Сплавы, цветные стекла, минералы

Большая поверхность раздела фаз вызывает сильное взаимодействие частиц дисперсной фазы с дисперсионной средой, которое приводит к тому, что частицы дисперсной фазы окружаются молекулами и ионами дисперсионной среды (растворителя) или же приобретают довольно значительный электрический заряд.

Любые два вещества на поверхности соприкосновения обязательно взаимодействуют. Это могут быть химическая реакция, взаимодействие, обусловленное проникновением одного вещества в другое и останавливающееся при достижении некоторого равновесного состояния, образование оболочки одного вещества вокруг частицы другого и многое другое. Дисперсная фаза и дисперсионная среда также взаимодействуют, но степень взаимодействия может быть различной.

По силе взаимодействия дисперсной фазы с дисперсионной средой коллоидные системы разделяют на лиофильные (от греч. – растворяю, – люблю) и лиофобные (от греч. – страх). Эти названия указывают на то, что в лиофильных коллоидных системах взаимодействие частиц с веществом дисперсионной среды сильнее, чем в лиофобных.

Лиофильные дисперсные системы характеризуются сильным притяжением молекул дисперсионной среды к частицам дисперсной фазы. Вокруг частиц самопроизвольно образуются плотные и сравнительно устойчивые сольватные оболочки. При взаимодействии с молекулами воды говорят о гидрофильности дисперсной фазы и образовании гидратных оболочек. Если частицы распределены в маслоподобных органических веществах и окружены такими оболочками, говорят об олеофильности частиц. Лиофильные вещества (тела) растворяются в данной жидкости, набухают в ней или хорошо смачиваются.

В лиофильных коллоидах поверхность частиц сильно сольватирована и поверхностная энергия (поверхностное натяжение) на границе раздела фаз мала. Лиофильные коллоиды образуются в результате самопроизвольного диспергирования крупных частиц твердого вещества или капель жидкости на мельчайшие коллоидные частицы (или мицеллы). Лиофильные коллоиды термодинамически устойчивы и поэтому почти не разрушаются при постоянстве условий их образования.

Лиофильные системы самопроизвольно образуются в жидкостях без участия электролитов или поверхностно-активных веществ. Так, гидрофильные системы образуют желатин и крахмал, которые сначала набухают в воде и затем переходят в раствор (студень, кисель, крахмальный клей); альбумины, в том числе яичный белок, также растворяются в воде; натуральный каучук легко растворяется в бензине (резиновый клей). К лиофильным коллоидным системам относятся растворы обычного мыла в воде.

Важнейшая характеристика дисперсных систем – знак и величина заряда частиц. У частиц лиофильных коллоидов заряд или очень мал, или вообще отсутствует. Заряд на частице лиофильного коллоида изменяется очень легко при прибавлении небольших количеств электролитов. Изменение концентрации ионов водорода в растворе (рН) приводит к перезарядке частиц коллоидного раствора. В электрическом поле лиофильные коллоиды или не перемещаются, или перемещаются в любом направлении.

Слабое взаимодействие молекул дисперсионной среды с частицами дисперсной фазы приводит к образованию лиофобных систем. Если дисперсионной средой является вода, говорят о гидрофобности системы, если органические маслоподобные вещества – об ее олеофобности. Частицы лиофобных веществ (тела) не растворяются, плохо смачиваются и не набухают в веществе дисперсионной среды. Лиофобные системы с концентрацией дисперсной фазы выше 1% получить не удается, а лиофильные коллоидные системы могут быть очень концентрированными.

О лиофильности или лиофобности системы можно судить по количеству теплоты, выделяющейся при растворении, набухании и смачивании. У лиофильных систем теплота взаимодействия намного больше, чем у лиофобных.

На гладкой поверхности лиофильного вещества капля жидкости растекается, образуя тонкий слой (пленку), а на лиофобной поверхности капля не растекается, образуя линзу или сплющенный шар. Количественной мерой лиофобности может служить величина угла между поверхностями капли и смачиваемого тела (краевой угол, или угол смачивания).

Лиофобные коллоидные системы по вязкости близки к дисперсионной среде, лиофильные системы имеют более высокую вязкость.

Лиофильные коллоидные растворы рассеивают свет слабее лиофобных.

Типичные лиофобные вещества – оксиды или сульфиды элементов металлического характера.

Принципиальное различие лиофобных и лиофильных коллоидных систем состоит в их термодинамических свойствах. Лиофобные системы – гетерогенные, и в этом отношении их нельзя относить к истинным растворам. Лиофильные системы – однофазные, гомогенные, обладающие многими свойствами истинных растворов. Вследствие высокой поверхностной энергии лиофобные системы термодинамически и кинетически неустойчивы. Лиофильные системы термодинамически устойчивы.

При распаде лиофобных коллоидов происходит укрупнение коллоидных частиц, которое сопровождается уменьшением энергии системы. Способность противостоять укрупнению частиц (агрегативная устойчивость) у лиофобной системы имеет временный характер и часто обусловлена наличием веществ (стабилизаторов), адсорбирующихся на поверхности частиц и препятствующих их слипанию (или слиянию).

Грубодисперсные системы типа «твердое вещество–жидкость» со сравнительно крупными (больше 1 10 –3 мм) частицами называются суспензиями , или взвесями. Частицы суспензий не обнаруживают броуновского движения. Суспензии с плотностью больше, чем плотность дисперсионной среды, выпадают в осадок; если же их плотность меньше, частицы всплывают.

Мутность воды природных водоемов обусловлена как тонкодисперсными, так и грубодисперсными примесями (песчинки, глина, частицы разложения растительных и животных организмов). При нарушении донного осадка в море или океане возникают придонные суспензионные течения (мутьевые потоки), которые движутся со скоростью до 90 км/ч на сотни километров. Мутность присуща водным потокам с высокой скоростью течения.

При максимальной мутности природных вод концентрация частиц достигает 1 г/л. Мутность (или обратную ей величину – прозрачность ) природной воды определяют, испаряя воду, высушивая сухой остаток при 105 °С и взвешивая его. Намного проще оценивать мутность высотой столба воды, через который просматривается на белой фарфоровой пластинке черный крест с толщиной линий 1 мм. В воде для хозяйственных целей крест должен просматриваться на глубине не менее 3 м.

Глина – тонкодисперсная осадочная горная порода, в составе которой 30–70% SiO 2 , 10–40% Al 2 O 3 и 5–10% H 2 O. Размер частиц глины не превышает 0,01 мм (при более крупных частицах глины переходят в песок). Суспензия глины в воде под названием «глинистый раствор» используется как промывная жидкость при бурении и как смазочное средство для уменьшения трения при вращении труб в скважинах.

Крайне концентрированная суспензия глины образует с водой тесто, которому можно придать желаемую форму и после высушивания и обжига получить кирпич или другое изделие. Фарфор изготавливают из смеси порошков каолинита Аl 4 (OH) 8 , кварца SiO 2 , полевого шпата (алюмосиликаты калия, натрия, кальция, бария). Порошок смешивают с водой до образования густой пластичной массы, которой придают желаемую форму, высушивают и обжигают.

Порошок цемента, полученный обжигом силикатов и алюминатов кальция, при смешении с водой через некоторое время затвердевает в прочное камнеподобное тело.

Кровь – важнейшая для жизни человека и многих животных суспензия эритроцитов, лейкоцитов и тромбоцитов в физиологическом растворе (лимфе). Эритроциты – красные кровяные тельца – переносят кислород и углекислый газ, имеют диаметр
(7,2–7,5) 10 –2 мм, и в 1 мм 3 крови их содержится 4,5–5 млн.

Поскольку размеры частиц относительно велики, суспензии кинетически неустойчивы, и при отстаивании частицы выпадают в осадок. Процесс выделения суспендированных частиц, происходящий под действием силы тяжести, называется седиментацией , или осаждением. В начале седиментации выпадают самые крупные частицы. Скорость осаждения частиц зависит от соотношения плотностей фаз, вязкости жидкой фазы, радиуса частиц, степени их гидрофильности, присутствия поверхностно-активных веществ и других факторов.

На гидрофильности или гидрофобности частиц основана флотация – разделение мелких частиц, обладающих различной смачиваемостью. При флотационном методе обогащения частицы несмачиваемых гидрофобных минералов собираются на поверхности, а частицы смачиваемых гидрофильных минералов обволакиваются пленкой жидкости и опускаются на дно. Несмачиваемые частицы снимаются с поверхности жидкости. Так происходит разделение руды на фракции
(рис. 8.28).

По размерам частиц промежуточное положение между суспензиями и истинными растворами занимают золи . Золи – высокодисперсные системы с частицами из твердого вещества, находящимися в броуновском движении . Чаще всего золями называют системы с жидкой дисперсионной средой. Золи – типичные коллоидные системы, которые наиболее ярко проявляют свойства, присущие веществу в высокодисперсном состоянии.

Методы исследования дисперсных систем (определение размера, формы и заряда частиц) основаны на изучении их особых свойств, обусловленных гетерогенностью и дисперсностью, в частности оптических. Коллоидные растворы обладают оптическими свойствами, отличающими их от настоящих растворов, – они поглощают и рассеивают проходящий через них свет. При боковом рассматривании дисперсной системы, через которую проходит узкий световой луч, внутри раствора на темном фоне виден светящийся голубоватый так называемый конус Тиндаля (рис. 8.29). То же самое происходит, когда мы замечаем в пыльной комнате светлую полосу солнечного света из окна. Это явление называется опалесценцией .

Рассеяние света возможно, если размер коллоидной частицы меньше длины волны проходящего света и показатели преломления дисперсной фазы и дисперсионной среды различны. Размеры коллоидных частиц меньше длин волн видимой части спектра (примерно 0,1–0,2 длины волны света), и поглощенная световая энергия вновь испускается частицами в различных направлениях, что проявляется в рассеивании света. Интенсивность светорассеяния резко увеличивается с уменьшением длины световой волны.

Конус Тиндаля тем ярче, чем выше концентрация и больше размер частиц. Интенсивность светорассеяния усиливается при коротковолновом излучении и при значительном отличии показателей преломления дисперсной и дисперсионной фаз. С уменьшением диаметра частиц максимум поглощения смещается в коротковолновую часть спектра, и высокодисперсные системы рассеивают более короткие световые волны и поэтому имеют голубоватую окраску. На спектрах рассеяния света основаны методы определения размера и формы частиц.

Размеры частиц золей обычно равны 10 –3 –10 –5 мм, что позволяет им участвовать в броуновском движении – непрерывном беспорядочном перемещении мельчайших частиц в жидкости или газе (рис. 8.30).

Частицы дисперсных систем имеют различные размеры, и их распределение по размерам описывается кривыми, похожими на кривые распределения молекул газа по энергиям и скоростям. Распределение частиц дисперсной фазы по размерам показано на рис. 8.32.

Площадь прямоугольника равна доле частиц, размеры которых лежат в диапазоне a , вся площадь под кривой распределения равна единице. Чем меньше диапазон a , тем точнее кривая отражает распределение частиц по размерам. Подобного типа кривые могут быть симметричными, несимметричными (как на рис. 8.32) и даже с несколькими максимумами.

Броуновское движение препятствует седиментации (оседанию) частиц под действием силы тяжести и является одной из причин устойчивости дисперсных систем. Благодаря броуновскому движению частицы в зависимости от их массы (и плотности) распределяются в поле тяготения по высоте
(рис. 8.33). Такое распределение частиц называется седиментационным равновесием . Оно обнаруживается в жидких и воздушных средах. Внизу сосуда с жидкостью или водоема скапливаются частицы с большей массой.

Рис. 8.33.
Седиментационное равновесие

После выведения системы из седиментационного равновесия перемешиванием через некоторое время она снова возвратится в исходное состояние. Скорость установления седиментационного равновесия невысока, и оно может наступить через несколько дней, но затем будет сохраняться, пока не произойдет разрушения золя.

Если после установления седиментационного равновесия в химическом стакане (или водоеме) отбирать жидкость из тонкого слоя раствора между расстояниями h 2 и h 1 от дна (или от поверхности), то можно судить о числе и плотности частиц в различных слоях дисперсионной среды и выделить частицы с близкими размерами или плотностями.

Раствором называют гомогенную систему, состоящую из нескольких компонентов, т.е. образованную из двух или более индивидуальных веществ. По определению Гиббса: раствор - это фаза переменного состава . Условно состав раствора подразделяют на растворитель (компонент, присутствующий в системе в относительно большем количестве) и растворенное вещество (другие компоненты). Раствор будет идеальным , если образование его не сопровождается уменьшением или увеличением его объема, а также выделением или поглощением тепла. Идеальные растворы подчиняются закону Рауля (см. ниже) при всех концентрациях и всех температурах. Реальные растворы в связи с явлениями ассоциации, диссоциации, сольватации и др. не обладают упомянутыми выше свойствами. Но в состоянии сильного разбавления, а также, если они образованы сходными по химическому составу и физическим свойствам веществами, приближаются к идеальным, поэтому, к ним можно с некоторым приближением применять количественные закономерности, описывающие состояние идеальных растворов.

Здесь рассматриваются только растворы, в которых растворителем является жидкость (чаще всего вода), а растворенными веществами – газы, жидкости или твердые вещества. Состав раствора характеризуется количеством растворенного вещества (веществ) в единице количества раствора или растворителя.

Осмос самопроизвольное движение молекул растворителя через полупроницаемую мембрану, разделяющую растворы разной концентрации, из раствора меньшей концентрации в раствор с более высокой концентрацией, что приводит к разбавлению последнего. В качестве полупроницаемой мембраны, через маленькие отверстия которой могут селективно проходить только небольшие по объему молекулы растворителя и задерживаются крупные или сольватированные молекулы или ионы, часто служит целлофановая пленка – для высокомолекулярных веществ, а для низкомолекулярных – пленка из ферроцианида меди. Процесс переноса растворителя (осмос) можно предотвратить, если на раствор с большей концентрацией оказать внешнее гидростатическое давление (в условиях равновесия это будет так называемое осмотическое давление, обозначаемое буквой p). Для расчета значения p в растворах неэлектролитов используется эмпирическое уравнение Вант-Гоффа:

p = C R T, (4.1)

где С – молярная концентрация вещества, моль/кг;

R – универсальная газовая постоянная, Дж/моль · К.

Величина осмотического давления пропорциональна числу молекул (в общем случае числу частиц) одного или нескольких веществ, растворенных в данном объеме раствора, и не зависит от их природы и природы растворителя. В растворах сильных или слабых электролитов общее число индивидуальных частиц увеличивается вследствие диссоциации молекул, поэтому в уравнение для расчета осмотического давления необходимо вводить соответствующий коэффициент пропорциональности, называемый изотоническим коэффициентом .


p = i C R T, (4.2)

гдеiизотонический коэффициент, рассчитываемый как отношение суммы чисел ионов и непродиссоциировавших молекул электролита к начальному числу молекул этого вещества.

Так, если степень диссоциации электролита, т.е. отношение числа молекул, распавшихся на ионы, к общему числу молекул растворенного вещества, равна a и молекула электролита распадается при этом на n ионов, то изотонический коэффициент рассчитывается следующим образом:

i = 1 + (n – 1)×a, (i > 1). (4.3)

Для сильных электролитов можно принять a = 1, тогда i = n, и коэффициент i (также больше 1) носит название осмотического коэффициента.

Явление осмоса имеет большое значение для растительных и животных организмов, поскольку оболочки их клеток по отношению к растворам многих веществ обладают свойствами полупроницаемой мембраны. В чистой воде клетка сильно набухает, в ряде случаев вплоть до разрыва оболочки, а в растворах с высокой концентрацией солей, наоборот, уменьшается в размерах и сморщивается из-за большой потери воды. Поэтому при консервировании пищевых продуктов к ним добавляется большое количество соли или сахара. Клетки микроорганизмов в таких условиях теряют значительное количество воды и гибнут.

Осмотическое давление обеспечивает движение воды в растениях за счет различия осмотических давлений между клеточным соком корней растений (5-20 бар) и почвенным раствором, дополнительно разбавляемом при поливе. Осмотическое давление обусловливает в растении подъем воды от корней до вершины. Таким образом, клетки листьев, теряя воду, осмотически всасывают ее из клеток стебля, а последние берут ее из клеток корня.

Растворимость газов в жидкостях изменяется в широких пределах и зависит не только от природы газа и растворителя, но и от давления и температуры. Количество растворенного газа пропорционально давлению его паров над раствором (закон Генри ). Растворимость газов уменьшается при увеличении температуры и присутствии в растворе других веществ.

Равновесие между жидкостью и паром является динамическим – между ними происходит непрерывный обмен молекулами (частицами), причем количество этих молекул, проходящих через единицу поверхности раздела обеих фаз в условиях равновесия, одинаково (в обоих направлениях).

Согласно закону Рауля относительное понижение давления пара растворителя (А) над раствором зависит только от мольной доли растворенного в жидкости вещества (В), то есть определяется числом частиц вещества В в единице объема, но не зависит от свойств растворенного вещества:

где N В – мольная доля вещества В в растворе, определяемая по формуле

, (4.5)

где n – количество моль вещества;

– давление насыщенного пара над чистым растворителем;

Р А – давление пара растворителя над раствором (при той же температуре).

Закон Рауля выполняется для идеальных и сильно разбавленных растворов.

Р А = (при Т = const), (4.6)

где N A – мольная доля вещества А в растворе, определяемая по формуле

. (4.7)

Приведенное уравнение (4.6) показывает,что давление пара растворителя над реальным раствором прямо пропорционально мольной доле растворителя в этом растворе.

При решении задач, связанных с испарением конденсированной фазы чистого вещества, можно использовать следующее уравнение:

(4.8)

где Р 1 и Р 2 – давление паров при абсолютных температурах Т 1 и Т 2 соответственно;

– мольная теплота испарения (парообразования), считающаяся постоянной в данном температурном интервале;

R – универсальная газовая постоянная.

Жидкость кипит при той температуре, при которой давление насыщенного пара над ней достигает внешнего давления. С ростом в ней концентрации растворенного нелетучего вещества давление пара растворителя над раствором понижается и раствор кипит при более высокой температуре, чем чистый растворитель. Повышение (изменение) температуры кипения от Т 0 для чистого растворителя до Т для разбавленных растворов рассчитывают с помощью следующего уравнения:

DТ кип = Т – Т о = К э ·С m ,в,(4.9)

где DТ кип – повышение температуры кипения раствора, К;

К э – эбулиоскопический коэффициент, К · кг · моль – 1 ;

Из уравнения (4.9) видно, что К э = DТ кип. при С m , В = 1 моль/ кг. Повышение температуры кипения зависит от концентрации раствора, т.е. от числа частиц в единице объема, но не зависит от типа и свойств этих частиц.

Эбулиоскопический коэффициент зависит только от природы растворителя и определяется следующим образом:

, (4.10)

где М А – молярная масса растворителя; г/моль;

DН исп – мольная теплота испарения чистого растворителя.

Поскольку , (4.11)

m A – масса растворителя, г,

то уравнение (4.9) с учетом уравнения (4.11) можно записать:

. (4.12)

Полученное уравнение (4.12) можно использовать для определения неизвестной молярной массы растворенного вещества В по экспериментально найденному значению DТ кип.

Для расчетов повышения температуры кипения растворов слабых или сильных электролитов необходимо использовать понятие об изотоническом коэффициенте i, приведенном в разделе об осмотическом давлении (см. уравнение 4.3). Тогда уравнение (4.9) принимает следующий вид:

DТ кип = К Э · i · С m , В. (4.13)

Растворы замерзают при более низкой температуре, чем чистый растворитель, что является следствием понижения давления пара растворителя над раствором. Для разбавленных растворов понижение температуры замерзания от Т 0 для чистого растворителя до Т для раствора зависит от количественного состава раствора:

DТ зам = Т 0 – Т = К к · С m , В, (4.14)

где DТ зам – понижение температуры замерзания раствора, К;

К к – криоскопический коэффициент, К · кг · моль – 1 ;

С m , В – моляльная концентрация вещества В, моль/кг.

Из уравнения (4.14) следует, что DТ зам = К к при С m , В = 1 моль/кг и понижение температуры замерзания раствора определяется только числом частиц в единице его объема, но не зависит от природы этих частиц.

,(4.15)

где М А – молярная масса растворителя А, г/моль;

DН пл – мольная теплота плавления чистого растворителя.

Если в массе растворителя m А находится масса растворенного вещества В, то

,(4.16)

где m B – масса растворенного вещества В, г;

М В – молярная масса растворенного вещества В, г/моль;

m A – масса растворителя, г.

Тогда уравнение (4.14) можно записать:

 (4.17)

Уравнение (4.17) можно использовать при экспериментальном определении и расчете молярной массы неизвестного вещества по понижению температуры замерзания его раствора в известном растворителе.

Если растворенное вещество распадается в растворе на ионы, то увеличение числа частиц за счет диссоциации его молекул учитывается через введение изотонического коэффициента i (см. уравнение 4.3):

DТ зам = К к · i · С m , В. (4.18)

Пример

Водный раствор спирта, содержащий 0,17 г спирта и 20 г воды, замерзает при температуре – 0,354 0 С. Рассчитать молярную массу спирта, если криоскопический коэффициент для воды равен 1,86 о С · кг · моль –1 .

Решение

Для решения воспользуемся уравнением (1.60):

Ответ . М сп = 46 г/моль.

Первый закон Коновалова (применим как для идеальных, так и для отклоняющихся от закона Рауля растворов): насыщенный пар над равновесным ему раствором из двух жидкостей относительно богаче тем компонентом, добавление которого к системе повышает общее давление пара (или снижает температуру кипения). Поэтому при испарении раствора пар обогащен более летучим компонентом, а жидкость – менее летучим. На различиях в составах раствора и равновесного с ним пара основан метод разделения смесей (в основном органических жидкостей) путем ректификации. Повторяя операции испарения – конденсации, можно получить чистые компоненты. На практике это реализуется в ректификационных колонках.

Для растворов, значительно отклоняющихся от закона Рауля, на кривых зависимости давления пара над раствором от состава раствора часто имеется точка максимума или минимума. В экстремальных точках состав пара совпадает с составом жидкости (второй закон Коновалова). Такие смеси называются азеотропными, разделить их перегонкой (ректификацией) нельзя.

Для сильно различающихся по своей природе и по этой причине практически не смешивающихся жидкостей давление пара каждого компонента над смесью равно давлению пара чистого компонента. Тогда полное давление пара равно сумме давлений насыщенного пара обоих компонентов в чистом состоянии (при этой же температуре):

Р = Р А + Р В. (4.19)

Однако температура кипения такой смеси ниже температур кипения каждой из индивидуальных жидкостей. Это свойство используется для перегонки с водяным паром путем барботирования его через не смешивающуюся с водой жидкость с последующей конденсацией выходящих паров. Перегонка с водяным паром позволяет отгонять высококипящие жидкости при температуре ниже 100 о С.

Фазовые равновесия .

На прошлой лекции мы рассмотрели химическое равновесие, константу равновесия, ее связь с т.д. величинами и факторы, влияющие на сдвиг равновесия.

Хим. равновесие является динамическим, т.е. сбалансированы два противоположных процесса. Еще одним примером динамического равновесия может служить человек, идущий вверх по спускающемуся вниз эскалатору.

Динамическое равновесия реализуется, когда сбалансированы два противоположных процесса. Динамическое равновесие м.б. физическим и химическим . В качестве примера физического равновесия служат фазовые равновесия, которые устанавливаются между различными фазами системы. Дадим определение фазы.

Фаза – гомогенная часть гетерогенной системы (часть, имеющая одинаковый состав и свойства во всех точках, отделенная от других частей поверхностями раздела). Если мы имеем систему, состоящую из осадка и раствора, то это двухфазная система т.-ж. Аналогично можно рассмотреть систему ж.-пар. Если скорость испарения равна скорости конденсации, то система находится в динамическом равновесии.

Существуют три физических состояния вещества – твердое, жидкое и газообразное. Фазовый переход – переход из одной фазы в другую.

Компонент системы – такая составная часть системы, которая является химически однородным веществом, может быть выделена из системы и может существовать в изолированном состоянии в течение длительного времени. Например Na + и Cl – не могут быть компонентами. Компонентами в растворе хлорида натрия являются NaCl и вода. Системы по количеству компонентов можно разделить на однокомпонентные системы, двухкомпонентные, трехкомпонентные, многокомпонентные.

Диаграммы состояния – графическое изображение всех возможных состояний термодинамической системы в пространстве основных параметров состояния (Т, р, состав). Они показывают условия существования той или иной фазы.

Рассмотрим диаграмму состояния воды .

При обычных условиях вода существует в виде кристаллов (лед), жидкости и газа (пар). Каждая из этих фаз воды устойчива только при определенных сочетаниях температуры и давления. Например, если при атмосферном давлении повысить температуру до 100 °С, то вода закипит и превратится в пар (газ). Если давление будет ниже атмосферного, переход жидкости в пар будет проходить при более низкой температуре. При некоторых низких давлениях вода кипит и при комнатной температуре. Если давление выше атмосферного, то вода закипит при температуре выше 100 °С. Лед плавится при температуре 0 °С и атмосферном давлении, но при изменении давления изменяется и температура плавления льда.

Области фазовой диаграммы соответствуют одной фазе. Линии соответствуют условиям фазового равновесия. ВТ – кривая плавления, ТС – кривая кипения (при давлении 1 атм Ткип=373 К), АТ – кривая сублимации. Точка С – критическая температура – выше этой точки пары воды не могут быть превращены в жидкость никаким повышением давления. Пар и жидкость перестают быть различимы.

Т– тройная точка – в равновесии находятся лед, вода и пар.

Изменяя температуру или давление можно изменять состояние вещества. Пусть точка 1. изображает твердое состояние вещества при давлении выше тройной точки. При нагревании вещества при постоянном давлении тело будет последовательно переходить из твердого в жидкое и газообразное состояние. Если будем нагревать вещество при давлении ниже тройной точки, то вещество будет переходить в пар без предварительного образования жидкости – возгонка (сублимация)

Особые свойства воды : при увеличении давления Тпл уменьшается, при увеличении давления происходит разрушение водородных связей, и происходит образование более плотной жидкой фазы (обычно наоборот – при увеличении давления образуется более плотная твердая фаза).

ST –кривая переохлаждения – вода находится в метастабильном состоянии.

Дать диаграмму СО2 (Фримантл 1-с.287)

Лекция 5: Растворы. Свойства растворов. Способы выражения концентрации растворов.

План лекции:

1. Понятие о растворах. Классификация растворов.

4. Способы выражения концентрации растворов.

5. Коллигативные свойства растворов.

1.Растворы. Классификация растворов.

Раствором называется гомогенная (однородная) система, состоящая из двух или более независимых компонентов (растворенное вещество и растворитель), а также продуктов их взаимодействия. Компонент, количество которого преобладает в данной системе, называют растворителем.

По агрегатному состоянию растворы делятся:

    газообразные растворы : воздух – это раствор кислорода, паров воды, углекислого газа СО2 и благородных газов в ; твердые растворы : сплавы металлов; жидкие растворы в свою очередь делятся: растворы твердых веществ в жидкостях : соль+Н2О, сахар+Н2О, йод+Н2О растворы газообразныхых веществ в жидкостях : лимонады, нашатырный спирт

3. растворы жидких веществ в жидкостях : уксус, (спирт + вода)

Наибольшее значение для химии имеют растворы, в которых растворителем является жидкость. Относительное содержание компонентов в растворе может быть любым, оно ограничено лишь взаимной растворимостью веществ, которая зависит от их химической природы, их сродства друг к другу, а также от условий приготовления растворов – температуры, давления (в случае растворения газов), присутствия других растворенных веществ.

По относительным количествам растворенного вещества и растворители растворы бывают: разбавленные и концентрированные .

По соотношению преобладания частиц, переходящих в раствор и удаляющихся из раствора, различают растворы насыщенные , ненасыщенные и перенасыщенные .

Насыщенный раствор - это раствор, который находится в равновесии с твердой фазой растворенного вещества и содержит максимально возможное при данных условиях количество этого вещества.

Раствор концентрация которого ниже концентрации насыщенного раствора называется ненасыщенным . В таком растворе можно при тех же условиях растворить дополнительное количество того же самого вещества.

Если раствор, насыщенный при нагревании, осторожно охладить до комнатной температуры так, чтобы не выделялись кристаллы соли, то образуется перенасыщенный раствор. Таким образом, перенасыщенным называется раствор, в котором при данной температуре содержится большее количество растворенного вещества, чем возможно в насыщенном растворе. Перенасыщенный раствор нестабилен, и при изменении условий (например при энергичном встряхивании или внесении кристаллика соли – затравки для кристаллизации) образуется насыщенный раствор и осадок кристаллов соли.

2. Растворимость веществ. Факторы, влияющие на растворимость веществ.

Количественной характеристикой соотношения компонентов насыщенного раствора является растворимость . Наиболее распространенными способами такой характеристики служат:

· коэффициент растворимости вещества (Р) – наибольшая масса вещества, способная при данной температуре раствориться в 100 г растворителя. Например, при 20ْ С в 100 г воды с образованием насыщенного раствора растворяется 36,0 г NaCI, значит Р(NaCI) = 36.

· молярная растворимость вещества ( S) - число молей вещества, способное при данной температуре раствориться в 1 л указанного растворителя с образованием насыщенного раствора. Так, S(NaCI) = 6,154 моль\л

· коэффициент поглощения газа –наибольший объем газа, который может раствориться в единице объема растворителя при данной температуре и парциальном давлении газа 1 атм. Так при 20ْ С коэффициенты поглощения водой азота и кислорода, молекулы которых неполярны, составляют соответственно 0,016 и 0,031. Для газов, молекулы которых полярны, коэффициент их поглощения водой значительно выше, например для HCI – 500, NH3 – 1300.

Растворимость веществ существенно зависит от природы растворяемого вещества и растворителя, температуры и давления.

Зависимость от природы реагирующих веществ

Наибольшая растворимость достигается тогда, когда эти силы межмолекулярного взаимодействия имеют подобный характер: «подобное растворяется в подобном». Так вещества с ионным типом химической связи (соли, щелочи) или, полярные (спирты, альдегиды) хорошо растворимы в полярных растворителях, например в воде. И наоборот малополярные соединения, например оксид углерода (II) хорошо растворимы в неполярных соединениях, например в сероуглероде.

Зависимость от температуры.

Так как растворение процесс обратимый, значит к нему применим принцип Ле-Шателье: если растворение вещества происходит с поглощением теплоты, то повышение температуры приводит к увеличению растворимости.

Для большинства твердых веществ повышение температуры способствует увеличению растворимости.

Для газов повышение температуры способствует уменьшению растворимости, так как связи между молекулами растворимого вещества и растворителя - непрочные.

3. Сущность процесса растворения. Термодинамика процесса растворения.

Растворение веществ часто происходит с выделением или поглощением теплоты, иногда с изменением объема. Основоположником теории растворов является. Сущность процесса растворения сводится к следующему:

    В растворах между компонентами раствора имеется взаимодействие, что приводит к образованию нестойких соединений переменного состава. Эти соединения растворенного вещества и растворителя называется сольватами , если растворитель – вода, то их называют гидратами . Раствор является динамической системой, в котором распадающиеся соединения находятся в подвижном равновесии с продуктами распада в соответствии с законом действующих масс. Сольватация (гидратация) обусловлена силами Ван-дер-Ваальса, действующими между растворенными веществом и растворителем. Сольватация протекает тем лучше, чем более полярны молекулы, составляющие раствор. Вода - хороший растворитель, так как её молекулы сильно полярны. Гидратная вода может быть связана с молекулами твердого вещества и входить в состав кристаллов (кристаллогидраты ): CuSO4 ∙ 5 H2O –медный купорос, CaSO4 ∙ 2 H2O – гипс.

Процесс растворения можно выразить схемой:

растворенное вещество + растворитель ó вещество в растворе ± ∆ Н.

Тепловой эффект, сопровождающий процесс растворения, относящийся к 1 молю растворенного вещества называется молярной теплотой растворения ∆ Н раств.

∆Н раств. = ∆Н 1 + ∆Н 2

Н 1 > 0 - количество теплоты, затраченной на распределение частиц растворяемого вещества среди молекул растворителя (процесс эндотермический).

∆Н 2 < 0 - тепловой эффект сольватации (процесс экзотермический).

Тепловой эффект сольватации - количество теплоты, которая выделяется при взаимодействии растворенного вещества с молекулами растворителя и образование связей между ними.

для твердого вещества:

∆Н 1 > 0 - энергия необходимая для разрушения кристаллической решетки и энергия необходимая для разрыва связей между молекулами растворителя (процесс эндотермический).

В зависимости от того преобладает первая или вторая составляющие, процесс растворения может быть экзотермический или эндотермический:

если │ ∆Н2 │> │∆ Н1│, процесс экзотермический и ∆Н < 0;

если │∆Н2 │< │∆ Н1│, процесс эндотермический и ∆Н > 0.

4. Способы выражения состава растворов.

Состав растворов количественно принято выражать через безразмерные количественные величины – доли (массовую, объемную, молярную) и размерные величины – концентрации.

Массовая доля (W) или процентная концентрация - отношение массы растворенного вещества к массе раствора. Массовая доля – безразмерная величина, ее выражают в долях от единицы в процентах (10%). Массовая доля показывает, сколько граммов данного вещества, находится в 100 г раствора

m в-ва m в-ва

W(A)= m р-ра * 100% = m р-ра + m р-ля * 100%

mв-ва - масса растворенного вещества, г

mв-ва - масса раствора, г

m р-ля - масса растворителя, г.

W (NaOH) = 5% или 0,05 означает, что

5 г NaOH находится в 100г раствора,

5 г NaOH находится в 95 г воды

Объемная доля j - отношение объема растворенного вещества к объему раствора.

V( A) V(A)-объем компонента А

j(А) = V V-объем ратсвора.

Молярная доля N отношение числа молей растворенного вещества к сумме числа молей растворенного вещества и растворителя.

n a n a - количество компонентов А

N а = n a+ n в n в - количество растворителя

m a /M a .

N a = m a /M a +m в /M в

Концентрация показывает отношение массы или количества вещества к объему раствора.

Молярная концентрация (молярность) См (моль/л) – показывает число молей растворенного вещества в одном литре раствора, выражается отношением количества растворенного вещества к объему раствора.

n a 3

См (А) = V [моль/м, моль/л]

m a

См = M a *V

См-молярная концентрация раствора.

ma - масса вещества в граммах

Ma – молярная масса вещества в г/моль

V – объем раствора в литрах

Для обозначения молярной концентрации применяются символы:

1М-одномолярный раствор См = 1 моль/л

0,1М-децимолярный раствор См = 0,1 моль/л

Раствор в котором содержится 1 моль растворенного вещества называется одномолярным.

2М раствор NaOH означает, что 2 моля NaOH содержится в 1 литре раствора, т. е 2* 40 = 80 г NaOH.

Нормальная концентрация (нормальность раствора) или молярная концентрация эквивалента, Сн (экв/л) –показываетчисло эквивалентов растворенного вещества, содержащихся в одном литре раствора.

n экв. a

Сн = V

m a

Сн = М эква* V

Сн - нормальная концентрация [моль/л]

М эква – эквивалентная масса вещества в г/моль

ma - масса вещества в граммах

V – объем раствора в литрах

1Н - однонормальный раствор Сн =1 моль/л

0,1Н - децинормальный раствор Сн=0,1 моль/л

0,01Н - сантинормальный раствор Сн = 0,01 моль/л

Эквивалентом вещества называется реальная или условная частица вещества, которая может замещать, присоединять, высвобождаться или быть каким-либо образом эквивалентна (равнозначна) одному катиону H в кислотно-основных растворах или одному электрону в окислительно-восстановительных реакциях. Число, показывающее, какая доля реальной частицы вещества эквивалентна одному катиону H или одному электрону называется фактором эквивалентности ( f экв) . Количество эквивалента (n экв) также как и количество вещества измеряется в молях. Масса одного моля эквивалента называется молярной массой эквивалента (М экв) также как и молярная масса измеряется в г/моль. Между собой эти две массы связаны следующим соотношением:

М экв = М * f экв

для кислоты

1

f экв = n(Н)

n(Н) – число ионов водорода, способных замещаться на металл (основность кислоты)

для основания

1

f экв = n(ОН)

n(ОН) – число ионов гидроксогрупп (кислотность основания)

для солей

1

f экв = число атомов металла * заряд иона металла

С учетом фактора эквивалентности:

m a

Сн = М а * f экв * V

Титр раствора Т показывает массу растворенного вещества, содержащуюся в 1 мл раствора.

m a

Т = 1000 , [г/мл]

См*М А См*М эА

Т = 1000 = 1000

Моляльная концентрация (моляльность С m) - отношение количества растворенного вещества к массе растворителя, выраженой в килограммах.

n a

С m = m растворителя [моль/кг Н 2О]

1000 ma

С m = Ma* m Н

1000 - коэффициент перевода граммов в килограммы

Коллигативные свойства растворов.

Свойства растворов, которые зависят только от концентрации частиц в растворе и не зависят от природы растворенного вещества, называются коллигативными.

Растворы, образованные частицами строго одинакового размера, между которыми действуют примерно одинаковые силы межмолекулярного взаимодействия, не происходит химического взаимодействия, изменения температуры и объема называются идеальными. К идеальным растворам стремятся очень разбавленные растворы.

Коллигативные свойства разбавленных растворов могут быть описаны количественно и выражены в виде законов. К ним относятся:

· осмотическое давление

· давление насыщенного пара растворителя над раствором

· температура кристаллизации раствора

· температура кипения раствора

Осмос. Осмотическое давление.

Растворы однородны по всем частям объема. Если в один сосуд поместить концентрированный раствор, а сверху разбавленный, то через некоторое время эта неоднородная масса вновь станет однородной. Такой самопроизвольный процесс перемешивания вещества, приводящий к выравниванию его концентрации называется диффузией.

Если между двумя растворами поместить полупроницаемую перегородку (мембрану), то выравнивание концентраций будет проходить только вследствие перемещения молекул воды. Такая односторонняя диффузия называется осмосом.

Осмос – односторонняя самопроизвольная диффузия молекул растворителя через полупроницаемую перегородку из раствора с низкой концентрацией в раствор с более высокой концентрацией.

Полупроницаемые перегородки способны пропускать только молекулы растворителя, но не пропускают молекулы растворенного вещества.

природные полупроницаемые перегородки - стенки растительных и животных клеток, стенки кишечника;

искусственные полупроницаемые перегородки – целлофан, пергамент, пленки из желатина.

Количественной характеристикой осмоса является осмотическое давление раствора.

Осмотическим давлением ( Pосм.) называют избыточное гидростатическое давление, возникающее в результате осмоса и приводящее к выравниванию скоростей взаимного проникновения молекул растворителя сквозь мембрану с избирательной проницаемостью.

К осмотическому давлению применимы все законы газового давления и для его вычисления можно использовать уравнение Клапейрона - Менделеева m

P*V = M*R*T

m

P = M*V*R*T

m

См = M* V

В 1887 г Вант-Гоффом в результате исследований была установлена такая зависимость:

P осм . = См*R*T [кПа ]

См –молярная концентрация растворенного вещества, моль/л

R – универсальная газовая постоянная, 8,314 Дж/моль* К

T – температура, К.

Закон Вант-Гоффа:

Осмотическое давление разбавленного идеального раствора неэлектролита равно тому давлению, которое производило бы растворенное вещество, если бы при той же температуре находилось бы в газообразном состоянии и занимало бы объем, равный объему раствора.

Однако это уравнение справедливо только для растворов, в которых отсутствует взаимодействие частиц, т. е. для идеальных растворов. В реальных растворах имеют место межмолекулярные взаимодействия между молекулами вещества и растворителя, которые могут приводить или к диссоциации молекул растворенного вещества на ионы, или к ассоциации молекул растворенного вещества с образованием из них ассоциатов.

Диссоциации молекул растворенного вещества в водном растворе на ионы характерна для электролитов. В результате диссоциации число частиц в растворе увеличивается.

Ассоциация наблюдается, если молекулы вещества лучше взаимодействуют между собой, чем с молекулами растворителя. Это характерно для коллоидных растворов, что приводит к уменьшению числа частиц в растворе.

Для учета межмолекулярных взаимодействий в реальных растворах Вант-Гофф предложил использовать изотонический коэффициент i. Для молекул растворенного вещества физический смысл изотонического коэффициента:

i = число частиц растворенного вещества / число частиц исходного вещества.

Для растворов неэлектролитов, молекулы которых не диссоциируют и мало склонны к ассоциации, i =1.

Для водных растворов электролитов, вследствие диссоциации i > 1, причем максимальное его значение (i max) для данного электролита равно числу ионов в его молекуле:

NaCI CaCI2 Na3PO4

Для растворов, в которых вещество находится в виде ассоциатов, i < 1.

С учетом межмолекулярных взаимодействий осмотическое давление для реальных растворов равно:

P осм. = i*См* R* T , причем

i =1 для неэлектролитов

i > 1 для электролитов.

Изотонические растворы – имеют равное осмотическое давление. Гипертонические растворы – имеют большее осмотическое давление по сравнению с другим раствором. Гипотонические растворы – имеют меньшее осмотическое давление по сравнению с другим раствором.

Роль осмоса. СРС.

Понижение давление пара растворов. Законы Рауля.

Над любой жидкостью устанавливается определенное давление пара, насыщающего пространство. В отличии от поверхности растворителя, поверхность раствора частично занята молекулами растворенного вещества. Именно поэтому испарение с поверхности растворов всегда меньше, чем с поверхности растворителя, и при одной и той же температуре давление насыщенного пара над раствором всегда будет ниже давления пара над чистым растворителем.

Закон Рауля I:

. Давление пара раствора, содержащего нелетучее растворенное вещество, прямо пропорционально мольной доле растворителя в данном растворе

p = p0 · χр-ль

p = p0 · nр-ля/(nв-ва + nр-ля), где

p - давление пара над раствором, Па;

p0 - давление пара над чистым растворителем, Па;

χр-ль - мольная доля растворителя.

nв-ва и nр-ля – соответственно количество растворенного вещества и растворителя, моль.

Другая формулировка:

относительное понижение давления насыщенного пара растворителя над раствором равно мольной доле растворенного вещества :

(p0 – p)/p0 = χв-ва

(p0 – p)/p0 = nв-ва/(nв-ва + nр-ля)

При этом принимаем, что χв-ва + χр-ль = 1

Для растворов электролитов данное уравнение приобретает несколько иной вид, в его состав входит изотонический коэффициент i :

p0 – p = Δр

Δp = i · p0 · χв-ва , где

Δp - изменение давления паров раствора по сравнению с чистым растворителем;

χв-ва - мольная доля вещества в растворе

I – изотонический коэффициент.

i =1 для неэлектролитов, i > 1 для электролитов.

Изотонический коэффициент (или фактор Вант-Гоффа) - это параметр, не имеющий размерности, который характеризует поведение какого – либо вещества в растворе. То есть, изотонический коэффициент показывает, разницу содержания частиц в растворе электролита по сравнению с раствором неэлектролита такой же концентрации. Он тесно связан связан с процессом диссоциации, точнее, со степенью диссоциации и выражается следующим выражением:

i = 1+α(n- 1), где

n – количество ионов, на которые диссоциирует вещество.

α – степень диссоциации.

С понижением давления насыщенного пара растворителя над раствором связано повышение температуры кипения раствора и понижение температуры его замерзания. Любая жидкость кипит, когда давление насыщенного пара над ней становится равным атмосферному. Так как согласно I закону Рауля давление пара над раствором меньше, чем над раствором растворителя, то для того, чтобы раствор закипел, его нужно нагреть до более высокой температуры, чем растворитель. Таким образом, растворы кипят при более высокой температуре, а замерзают при более низкой температуре, чем чистый растворитель.

t кип = t кип р-ра - t кип р-ля

Разность температур кипения раствора и растворителя называется повышением температуры кипения.

t зам = t зам р-ля - t зам р-ра

Разность температур замерзания раствора и растворителя называется понижением температуры замерзания.

Закон Рауля II.

Понижение температуры замерзания и повышение температуры кипения не зависят от природы растворенного вещества и прямопропорциональны моляльной концентрации раствора.

t кип = i*Кэб*С m

t зам = i* Kкр*С m

Кэб

Ккр – криоскопическая константа

Cm – моляльная концентрация раствора [моль/кг растворителя]

i-изотонический коэффициент, i =1 для неэлектролитов, i > 1 для электролитов.

Кэб н 2о = 0,52 кг∙К/моль

Ккр н 2о = 1,86 кг∙К/моль

Кэб – эбулиоскопическая константа

Ккр – криоскопическая константа

Физический смысл:

Эбулиоскопическая константа (Кэб) – показывает повышение температуры кипения одномоляльного раствора по сравнению с чистым растворителем.

Криоскопическая константа (Ккр ) – показывает понижение температуры замерзания одномоляльного раствора по сравнению с чистым растворителем.

Все одномоляльные растворы неэлектролитов будут

кипеть при температуре: t кип = 100 С + 0,52 С = 100,52 С

и замерзать при температуре: t зам = 0 С– 1,86 С = - 1,86 С

Пример. Вычислить температуру кипения и температуру замерзания 4,6% раствора глицерина (С3 Н5 (ОН)3) в воде.

В 100г воды содержится 4,6г глицерина и 95,4г воды.

1000 ma 4,6*1000

Сm = Ma*m Н2О = 92* 95, 4 = 0,524 моль/кг

∆ t кип = 0,52 * 0,524 = 0,272 С

t кип = 100 + 0,272 = 100,272 С

∆ t зам = 1,86 * 0,524 = 0,975 С

t зам = 0 – 0,975 = - 0,975 С

Дарвин показал, что основные факторы эволюции органического мира, то есть наследственная изменчивость, борьба за существование и естественный отбор, приложимы и к эволюции человека. Благодаря им организм древней человекообразной обезьяны претерпел ряд морфофизиологических изменений, в результате которых выработалась вертикальная походка, разделились функции рук и ног.

Для объяснения антропогенеза недостаточно одних биологических закономерностей. Качественное своеобразие его вскрыл Ф.Энгельс, указав на социальные факторы: труд, общественную жизнь, сознание и речь. Труд - важнейший фактор эволюции человека

Труд начинается с изготовления орудий труда. Это, по словам Энгельса, «первое основное условие всей человеческой жизни, и притом в такой степени, что мы в известном смысле должны сказать: труд создал самого человека». Основной движущей силой антропогенеза явился труд, в процессе которого человек сам создает орудия труда. Наиболее высокоорганизованные животные могут употреблять предметы в качестве готовых орудий, но не способны создатьих. Животные только пользуются дарами природы, человек же изменяет ее в процессе труда. Животные также изменяют природу, но не преднамеренно, а лишь потому, что находятся и живут в природе. Их воздействие на природу сравнительно с воздействием на нее человека ничтожно.

Морфологические и физиологические преобразования наших обезьяноподобных предков правильнее будет назвать антропоморфозами, так как вызвавший их основной фактор - труд - был специфичен только для эволюции человека. Особенно важным было возникновение прямой походки. Размеры и масса тела обезьян увеличились, возник S-образный изгиб позвоночного столба, придавший ему гибкость, образовалась сводчатая пружинящая стопа, расширился таз, упрочился крестец, челюстной аппарат стал более легким и т.д. Прямохождение установилось не сразу. Это был весьма длительный процесс отбора наследственных изменений, полезных в трудовой деятельности. Предположительно он длился миллионы лет. Биологически прямохождение принесло человеку немало осложнений. Оно ограничило быстроту его передвижения, лишило подвижности крестец, что затруднило роды; длительное стояние и ношение тяжестей иногда приводит к плоскостопию и расширению вен на ногах. Зато благодаря прямохождению освободились руки для орудий труда. Возникновение прямохождения, по мнению Ч.Дарвина, а затем Ф.Энгельса, стало решающим шагом на пути от обезьяны к человеку. Благодаря прямохождению у обезьяноподобных предков человека руки освободились от необходимости поддерживать тело при передвижении по земле и приобрели способность к разнообразным движениям.

В начале процесса формирования человека рука у него была слаборазвитой и могла производить лишь самые простые действия. Особи с наследственными изменениями верхних конечностей, полезными для трудовых операций, преимущественно сохранялись благодаря естественному отбору. Ф.Энгельс писал, что рука не только орган труда, но и продукт труда. Различие между рукой человека и рукой человекообразных обезьян огромно: ни одна обезьяна не может изготовить своей рукой даже самый простой каменный нож. Понадобилось весьма длительное время для того, чтобы наши обезьяноподобные предки перешли от использования предметов окружающей природной среды в качестве орудий к их изготовлению. Самые примитивные орудия труда облегчают зависимость человека от окружающей природы, расширяют его кругозор, открывая в предметах природы новые, неизвестные свойства; наконец, они используются для дальнейшего совершенствования орудий труда.

Развитие трудовой деятельности приводит к ослаблению действия биологических закономерностей и усилению роли социальных факторов в антропогенезе.

Общественный образ жизни как фактор эволюции человека. С самого начала труд был общественным, так как обезьяны жили стадами. Ф.Энгельс указывал, что неправильно было бы искать предков человека, самого общественного существа в природе, среди необщественных животных. Стадность обезьяньих предков человека развивалась в общественное поведение под воздействием особого фактора. Таким фактором был труд, тесно связанный с преобразованием руки в орган труда. Труд способствовал сплочению членов общества; они коллективно защищались от зверей, охотились и воспитывали детей. Старшие члены общества обучали младших отыскивать природные материалы и изготовлять орудия, учили приемам охоты и сохранения огня. С развитием трудового процесса все яснее становилась польза взаимной поддержки и взаимопомощи.

Древнейшие орудия охоты и рыбной ловли свидетельствуют о том, что наши предки уже на ранних стадиях употребляли мясную пищу. Обработанная и приготовленная на огне, она уменьшала нагрузку на жевательный аппарат. Теменной гребень, к которому у обезьян прикрепляются мощные жевательные, потерял свое биологическое значение, сделался бесполезным и постепенно исчез в процессе естественного отбора; по той же причине переход от растительной пищи к смешанной привел к укорочению кишечника. Применение огня помогало защищаться от холода и зверей.

Накапливаемый жизненный опыт в познании природы совершенствовался от поколения к поколению. При жизни обществом имелись большие возможности для общения друг с другом: совместная деятельность членов общества вызвала необходимость сигнализации жестами, звуками. Первые слова были связаны с трудовыми операциями и обозначали действие, работу, а названия предметов появились позднее. Неразвитая гортань и ротовой аппарат предков человека в результате наследственной изменчивости и естественного отбора преобразовались в органы членораздельной речи человека. Человек, как и животные, воспринимает сигналы из окружающего мира через непосредственное раздражение органов чувств - это первая сигнальная система. Но человек способен воспринимать сигналы словом - он обладает второй сигнальной системой. Она составляет качественное различие высшей нервной деятельности человека и животных.

Возникновение речи усилило общение наших предков на почве совместного трудового процесса и, в свою очередь, способствовало развитию общественных отношений. Эволюция наших предков происходила под совместным действием социальных и биологических факторов. Естественный отбор постепенно утратил значение в эволюции человеческого общества. Все усложнявшиеся трудовые процессы изготовления орудий труда и предметов быта, членораздельная речь и жесты, мимика содействовали развитию головного мозга и органов чувств.

Развитие головного мозга, мышления, сознания стимулировало в то же время совершенствование труда и речи. Все полнее и лучше осуществлялась преемственность трудового опыта в поколениях. Только в обществе мышление человека могло достигнуть столь высокого развития.

Если морфологические и физиологические особенности человека передаются по наследству, то способности к коллективной трудовой деятельности, мышлению и речи никогда не передавались по наследству и не передаются теперь. Эти специфические качества исторически возникли и совершенствовались под действием социальных факторов и развиваются у каждого человека в процессе его индивидуального развития только в обществе благодаря воспитанию и образованию.

Итак, движущими силами антропогенеза являлись биологические факторы (наследственная изменчивость, борьба за существование и естественный отбор) и социальные (факторы (трудовая деятельность, общественный образ жизни, речь и мышление).

Входной контроль:

вопрос вариант ответа
Раствор: а) Сосредоточение, накапливание каких-либо веществ в определённом порядке.
Коацервация: б) Поглощение вещества из жидкой среды поверхностным слоем твёрдого тела, обычно имеющим большую площадь.
Коацерват: в) Пузырьки жидкости, окружённые белковыми плёнками, возникающие при взбалтывании водных растворов белков.
Микросферы Фокса: г) Фаза раствора с более высокой концентрацией веществ, окружённая определённым образом ориентированными диполями воды.
Адсорбция: д) Разделение раствора высокомолекулярных соединений на фазы с большей и меньшей концентрацией молекул.
Концентрирование: е) Однородные смеси двух или большего числа веществ, которые распределены в растворителе в виде отдельных атомов, ионов или молекул.

Ход выполнения работы:

Задание №1

Прочитайте текст «Многообразие теорий возникновения жизни на Земле», результаты оформите в таблицу:

Ответьте на вопрос : Какой теории придерживаетесь вы лично? Почему?

Задание №2

Прочитайте текст «Гипотезы происхождения человека», результаты оформите в таблицу:

Ответьте на вопрос : Какие взгляды на происхождение человека вам ближе всего? Почему?

Задание № 3

Найдите в учебнике описание сходства и различия человека и высших человекообразных обезьян, результаты оформите в таблицу:

«Отличие человека от человекообразных обезьян»

Сравниваемые признаки Человек Человекообразные обезьяны
Особенности строения скелета
Череп
Надбровные дуги
Положение тела при ходьбе
Позвоночник
Грудная клетка
Длина рук
Большой палец руки
Кисть руки
Стопа
Таз
Функция рук
Образ жизни
Взаимоотношения со средой
Высшая нервная деятельность (функции мозга)
Особенности строения мозга
Средства общения

Приложение №1

Приложение №2

Приложение 3

Выходной контроль:

Найдите соответствие между понятием и его определением, ответы оформите в таблицу:

вопрос вариант ответа
Древнейший человек: А. Перемещение по земле на задних конечностях, что позволило высвободить руки для защиты и добычи пищи.
Неандерталец: Б. Первые современные люди, характеризовавшиеся прямохождением и обладавшие членораздельной речью.
Кроманьонец: В. Группа людей, живших менее 200 тыс. лет тому назад.
Прямохождение: Г. Неоднородная группа людей, относящаяся к роду Человек и включающая питекантропов, синантропов и др. Жили около 1 млн лет назад.
Сходство всех процессов жизнедеятельности особей одного вида: Д. Вид коммуникативной деятельности человека, при которой использование средств языка для общения приобретает устойчивый понятийный характер.

Приложение №4


Сделайте общий вывод в соответствии с целями, поставленными перед вами в этой работе.

Список литературы:

Основные источники:

  1. Захаров В.Б., Мамонтов С.Г., Сонин Н.И. Общая биология. 10 кл. Рабочая тетрадь. – М., 2009.
  2. Каменский А.А., Криксунов Е.А., Пасечник В.В. Общая биология. 10-11 кл. – М., 2009.
  3. Константинов В.М., Рязанова А.П. Общая биология. Учеб. пособие для СПО. – М., 2010.
  4. Пономарева И.Н., Корнилова О.А., Лощилина Е.Н. Общая биология. 10 кл. Учебник. – М., 2010.
  5. Пономарева И.Н., Корнилова О.А., Лощилина Е.Н. Общая биология. 11 кл. Учебник. – М., 2010.
  6. Чебышев Н.В. Биология. Учебник для Ссузов. – М., 2010.

Интернет – ресурсы:

1. www.twirpx.com - Учебные материалы;

2. tana.ucoz.ru- Персональный сайт учителя биологии;

3. www.amgpgu.ru - Лекционный курс;

4. www.uchportal.ru – Учительский портал;

5. http://o5-5.ru – 5 и 5 Учебный материал;

6. http://pptx.ru/ - Коллекция презентаций PowerPoint.

Дополнительные источники:


Похожая информация.


© 2024 skudelnica.ru -- Любовь, измена, психология, развод, чувства, ссоры