Trigonometrické vzorce sú špeciálne prípady. Riešenie goniometrických rovníc

Domov / Neverná manželka

Lekcia a prezentácia na tému: "Riešenie jednoduchých goniometrických rovníc"

Dodatočné materiály
Vážení používatelia, nezabudnite zanechať svoje komentáre, recenzie, priania! Všetky materiály boli skontrolované antivírusovým programom.

Návody a simulátory v internetovom obchode Integral pre ročník 10 od 1C
Riešime úlohy v geometrii. Interaktívne úlohy pre budovanie vo vesmíre
Softvérové ​​prostredie "1C: Mathematical Constructor 6.1"

Čo budeme študovať:
1. Čo sú to goniometrické rovnice?

3. Dve hlavné metódy riešenia goniometrických rovníc.
4. Homogénne goniometrické rovnice.
5. Príklady.

Čo sú to goniometrické rovnice?

Chlapci, už sme študovali arkzín, arkkozín, arktangens a arkkotangens. Teraz sa pozrime na trigonometrické rovnice všeobecne.

Goniometrické rovnice sú rovnice, v ktorých je premenná obsiahnutá pod znamienkom goniometrickej funkcie.

Zopakujme si formu riešenia najjednoduchších goniometrických rovníc:

1) Ak |a|≤ 1, potom rovnica cos(x) = a má riešenie:

X= ± arccos(a) + 2πk

2) Ak |a|≤ 1, potom rovnica sin(x) = a má riešenie:

3) Ak |a| > 1, potom rovnica sin(x) = a a cos(x) = a nemajú riešenia 4) Rovnica tg(x)=a má riešenie: x=arctg(a)+ πk

5) Rovnica ctg(x)=a má riešenie: x=arcctg(a)+ πk

Pre všetky vzorce je k celé číslo

Najjednoduchšie goniometrické rovnice majú tvar: T(kx+m)=a, T je nejaká goniometrická funkcia.

Príklad.

Riešte rovnice: a) sin(3x)= √3/2

Riešenie:

A) Označme 3x=t, potom našu rovnicu prepíšeme do tvaru:

Riešenie tejto rovnice bude: t=((-1)^n)arcsin(√3 /2)+ πn.

Z tabuľky hodnôt dostaneme: t=((-1)^n)×π/3+ πn.

Vráťme sa k našej premennej: 3x =((-1)^n)×π/3+ πn,

Potom x= ((-1)^n)×π/9+ πn/3

Odpoveď: x= ((-1)^n)×π/9+ πn/3, kde n je celé číslo. (-1)^n – mínus jedna na mocninu n.

Ďalšie príklady goniometrických rovníc.

Riešte rovnice: a) cos(x/5)=1 b)tg(3x- π/3)= √3

Riešenie:

A) Tentoraz prejdime priamo k výpočtu koreňov rovnice:

X/5= ± arccos(1) + 2πk. Potom x/5= πk => x=5πk

Odpoveď: x=5πk, kde k je celé číslo.

B) Zapíšeme ho v tvare: 3x- π/3=arctg(√3)+ πk. Vieme, že: arctan(√3)= π/3

3x- π/3= π/3+ πk => 3x=2π/3 + πk => x=2π/9 + πk/3

Odpoveď: x=2π/9 + πk/3, kde k je celé číslo.

Riešte rovnice: cos(4x)= √2/2. A nájdite všetky korene na segmente.

Riešenie:

Riešime našu rovnicu vo všeobecnom tvare: 4x= ± arccos(√2/2) + 2πk

4x= ± π/4 + 2πk;

X= ± π/16+ πk/2;

Teraz sa pozrime, aké korene padajú do nášho segmentu. Pri k Pri k=0, x= π/16 sme v danom segmente.
Pri k=1, x= π/16+ π/2=9π/16 sme narazili znova.
Pre k=2, x= π/16+ π=17π/16, ale tu sme netrafili, čo znamená, že pre veľké k samozrejme tiež netrafíme.

Odpoveď: x= π/16, x= 9π/16

Dve hlavné metódy riešenia.

Pozreli sme sa na najjednoduchšie goniometrické rovnice, no existujú aj zložitejšie. Na ich riešenie sa používa metóda zavedenia novej premennej a metóda faktorizácie. Pozrime sa na príklady.

Poďme vyriešiť rovnicu:

Riešenie:
Na vyriešenie našej rovnice použijeme metódu zavedenia novej premennej, ktorá označuje: t=tg(x).

V dôsledku nahradenia dostaneme: t 2 + 2t -1 = 0

Nájdite korene kvadratickej rovnice: t=-1 a t=1/3

Potom tg(x)=-1 a tg(x)=1/3, dostaneme najjednoduchšiu goniometrickú rovnicu, nájdime jej korene.

X=arctg(-1) +πk= -π/4+πk; x=arctg(1/3) + πk.

Odpoveď: x= -π/4+πk; x=arctg(1/3) + πk.

Príklad riešenia rovnice

Riešte rovnice: 2sin 2 (x) + 3 cos(x) = 0

Riešenie:

Použime identitu: sin 2 (x) + cos 2 (x)=1

Naša rovnica bude mať tvar: 2-2cos 2 (x) + 3 cos (x) = 0

2 cos 2 (x) - 3 cos (x) -2 = 0

Zavedme náhradu t=cos(x): 2t 2 -3t - 2 = 0

Riešením našej kvadratickej rovnice sú korene: t=2 a t=-1/2

Potom cos(x)=2 a cos(x)=-1/2.

Pretože kosínus nemôže nadobúdať hodnoty väčšie ako jedna, potom cos(x)=2 nemá korene.

Pre cos(x)=-1/2: x= ± arccos(-1/2) + 2πk; x= ±2π/3 + 2πk

Odpoveď: x= ±2π/3 + 2πk

Homogénne goniometrické rovnice.

Definícia: Rovnice tvaru a sin(x)+b cos(x) sa nazývajú homogénne goniometrické rovnice prvého stupňa.

Rovnice formulára

homogénne goniometrické rovnice druhého stupňa.

Ak chcete vyriešiť homogénnu goniometrickú rovnicu prvého stupňa, vydeľte ju cos(x): Nemôžete deliť kosínusom, ak sa rovná nule, uistite sa, že to tak nie je:
Nech cos(x)=0, potom asin(x)+0=0 => sin(x)=0, ale sínus a kosínus sa nerovnajú nule súčasne, dostaneme rozpor, takže môžeme pokojne deliť o nulu.

Vyriešte rovnicu:
Príklad: cos 2 (x) + sin(x) cos (x) = 0

Riešenie:

Zoberme si spoločný faktor: cos(x)(c0s(x) + sin (x)) = 0

Potom musíme vyriešiť dve rovnice:

Cos(x)=0 a cos(x)+sin(x)=0

Cos(x)=0 pri x= π/2 + πk;

Zvážte rovnicu cos(x)+sin(x)=0 Vydeľte našu rovnicu cos(x):

1+tg(x)=0 => tg(x)=-1 => x=arctg(-1) +πk= -π/4+πk

Odpoveď: x= π/2 + πk a x= -π/4+πk

Ako riešiť homogénne goniometrické rovnice druhého stupňa?
Chlapci, vždy dodržiavajte tieto pravidlá!

1. Pozri, čomu sa rovná koeficient a, ak a=0, tak naša rovnica bude mať tvar cos(x)(bsin(x)+ccos(x)), ktorého príklad riešenia je na predchádzajúcej snímke

2. Ak a≠0, potom musíte obe strany rovnice vydeliť kosínusovou druhou mocninou, dostaneme:


Zmeníme premennú t=tg(x) a dostaneme rovnicu:

Vyriešte príklad č.:3

Vyriešte rovnicu:
Riešenie:

Vydeľme obe strany rovnice kosínusovou druhou mocninou:

Zmeníme premennú t=tg(x): t 2 + 2 t - 3 = 0

Nájdite korene kvadratickej rovnice: t=-3 a t=1

Potom: tg(x)=-3 => x=arctg(-3) + πk=-arctg(3) + πk

Tg(x)=1 => x= π/4+ πk

Odpoveď: x=-arctg(3) + πk a x= π/4+ πk

Riešte príklad č.:4

Vyriešte rovnicu:

Riešenie:
Transformujme náš výraz:


Môžeme riešiť také rovnice: x= - π/4 + 2πk a x=5π/4 + 2πk

Odpoveď: x= - π/4 + 2πk a x=5π/4 + 2πk

Riešte príklad č.:5

Vyriešte rovnicu:

Riešenie:
Transformujme náš výraz:


Zavedme náhradu tg(2x)=t:2 2 - 5t + 2 = 0

Riešením našej kvadratickej rovnice budú korene: t=-2 a t=1/2

Potom dostaneme: tg(2x)=-2 a tg(2x)=1/2
2x=-arctg(2)+ πk => x=-arctg(2)/2 + πk/2

2x= arctg(1/2) + πk => x=arctg(1/2)/2+ πk/2

Odpoveď: x=-arctg(2)/2 + πk/2 a x=arctg(1/2)/2+ πk/2

Problémy na samostatné riešenie.

1) Vyriešte rovnicu

A) sin(7x)= 1/2 b) cos(3x)= √3/2 c) cos(-x) = -1 d) tg(4x) = √3 d) ctg(0,5x) = -1,7

2) Riešte rovnice: sin(3x)= √3/2. A nájdite všetky korene na segmente [π/2; π].

3) Vyriešte rovnicu: detská postieľka 2 (x) + 2 detská postieľka (x) + 1 =0

4) Vyriešte rovnicu: 3 sin 2 (x) + √3 sin (x) cos(x) = 0

5) Vyriešte rovnicu: 3sin 2 (3x) + 10 sin(3x)cos(3x) + 3 cos 2 (3x) =0

6) Vyriešte rovnicu: cos 2 (2x) -1 - cos(x) =√3/2 -sin 2 (2x)

Môžete si objednať podrobné riešenie vášho problému!!!

Rovnosť obsahujúca neznámu pod znamienkom goniometrickej funkcie (`sin x, cos x, tan x` alebo `ctg x`) sa nazýva goniometrická rovnica a ďalej sa budeme zaoberať ich vzorcami.

Najjednoduchšie rovnice sú `sin x=a, cos x=a, tg x=a, ctg x=a`, kde `x` je uhol, ktorý sa má nájsť, `a` je ľubovoľné číslo. Zapíšme si koreňové vzorce pre každý z nich.

1. Rovnica `sin x=a`.

Pre `|a|>1` nemá žiadne riešenia.

Keď `|a| \leq 1` má nekonečný počet riešení.

Koreňový vzorec: `x=(-1)^n arcsin a + \pi n, n \in Z`

2. Rovnica `cos x=a`

Pre `|a|>1` - ako v prípade sínusu, nemá medzi reálnymi číslami žiadne riešenia.

Keď `|a| \leq 1` má nekonečný počet riešení.

Koreňový vzorec: `x=\pm arccos a + 2\pi n, n \in Z`

Špeciálne prípady pre sínus a kosínus v grafoch.

3. Rovnica `tg x=a`

Má nekonečný počet riešení pre ľubovoľné hodnoty „a“.

Koreňový vzorec: `x=arctg a + \pi n, n \in Z`

4. Rovnica `ctg x=a`

Má tiež nekonečný počet riešení pre akékoľvek hodnoty „a“.

Koreňový vzorec: `x=arcctg a + \pi n, n \in Z`

Vzorce pre korene goniometrických rovníc v tabuľke

Pre sínus:
Pre kosínus:
Pre tangens a kotangens:
Vzorce na riešenie rovníc obsahujúcich inverzné goniometrické funkcie:

Metódy riešenia goniometrických rovníc

Riešenie akejkoľvek goniometrickej rovnice pozostáva z dvoch fáz:

  • s pomocou premeny na najjednoduchšie;
  • vyriešiť najjednoduchšiu rovnicu získanú pomocou koreňových vzorcov a tabuliek napísaných vyššie.

Pozrime sa na hlavné metódy riešenia pomocou príkladov.

Algebraická metóda.

Táto metóda zahŕňa nahradenie premennej a jej nahradenie rovnosťou.

Príklad. Vyriešte rovnicu: `2cos^2(x+\frac \pi 6)-3sin(\frac \pi 3 - x)+1=0`

`2cos^2(x+\frac \pi 6)-3cos(x+\frac \pi 6)+1=0`,

urobte náhradu: `cos(x+\frac \pi 6)=y`, potom `2y^2-3y+1=0`,

nájdeme korene: `y_1=1, y_2=1/2`, z ktorých vyplývajú dva prípady:

1. `cos(x+\frac \pi 6)=1`, `x+\frac \pi 6=2\pi n`, `x_1=-\frac \pi 6+2\pi n`.

2. `cos(x+\frac \pi 6)=1/2`, `x+\frac \pi 6=\pm arccos 1/2+2\pi n`, `x_2=\pm \frac \pi 3- \frac \pi 6+2\pi n`.

Odpoveď: `x_1=-\frac \pi 6+2\pi n`, `x_2=\pm \frac \pi 3-\frac \pi 6+2\pi n`.

Faktorizácia.

Príklad. Vyriešte rovnicu: `sin x+cos x=1`.

Riešenie. Presuňme všetky členy rovnosti doľava: `sin x+cos x-1=0`. Pomocou , transformujeme a faktorizujeme ľavú stranu:

`sin x – 2sin^2 x/2=0`,

`2sin x/2 cos x/2-2sin^2 x/2=0`,

„2sin x/2 (cos x/2-sin x/2)=0“,

  1. `sin x/2 =0`, `x/2 =\pi n`, `x_1=2\pi n`.
  2. `cos x/2-sin x/2=0`, `tg x/2=1`, `x/2=arctg 1+ \pi n`, `x/2=\pi/4+ \pi n` , `x_2=\pi/2+ 2\pi n`.

Odpoveď: `x_1=2\pi n`, `x_2=\pi/2+ 2\pi n`.

Redukcia na homogénnu rovnicu

Najprv musíte túto trigonometrickú rovnicu zredukovať na jednu z dvoch foriem:

`a sin x+b cos x=0` (homogénna rovnica prvého stupňa) alebo `a sin^2 x + b sin x cos x +c cos^2 x=0` (homogénna rovnica druhého stupňa).

Potom obe časti vydeľte `cos x \ne 0` - pre prvý prípad a `cos^2 x \ne 0` - pre druhý prípad. Získame rovnice pre `tg x`: `a tg x+b=0` a `a tg^2 x + b tg x +c =0`, ktoré je potrebné vyriešiť známymi metódami.

Príklad. Vyriešte rovnicu: `2 sin^2 x+sin x cos x - cos^2 x=1`.

Riešenie. Napíšme pravú stranu ako `1=sin^2 x+cos^2 x`:

`2 sin^2 x+sin x cos x — cos^2 x=` `sin^2 x+cos^2 x`,

`2 hriech^2 x+sin x cos x — cos^2 x -` ` hriech^2 x — cos^2 x=0`

`sin^2 x+sin x cos x — 2 cos^2 x=0`.

Ide o homogénnu goniometrickú rovnicu druhého stupňa, jej ľavú a pravú stranu vydelíme `cos^2 x \ne 0`, dostaneme:

`\frac (sin^2 x)(cos^2 x)+\frac(sin x cos x)(cos^2 x) — \frac(2 cos^2 x)(cos^2 x)=0`

`tg^2 x+tg x — 2=0`. Zavedme nahradenie `tg x=t`, výsledkom čoho bude `t^2 + t - 2=0`. Korene tejto rovnice sú `t_1=-2` a `t_2=1`. potom:

  1. `tg x=-2`, `x_1=arctg (-2)+\pi n`, `n \in Z`
  2. `tg x=1`, `x=arctg 1+\pi n`, `x_2=\pi/4+\pi n`, ` n \in Z`.

Odpoveď. `x_1=arctg (-2)+\pi n`, `n \in Z`, `x_2=\pi/4+\pi n`, `n \in Z`.

Prechod do polovičného uhla

Príklad. Vyriešte rovnicu: `11 sin x - 2 cos x = 10`.

Riešenie. Aplikujme vzorce s dvojitým uhlom, výsledkom čoho je: `22 sin (x/2) cos (x/2) -` `2 cos^2 x/2 + 2 sin^2 x/2=` `10 sin^2 x /2 +10 cos^2 x/2`

`4 tg^2 x/2 — 11 tg x/2 +6=0`

Použitím vyššie opísanej algebraickej metódy dostaneme:

  1. `tg x/2=2`, `x_1=2 arctg 2+2\pi n`, `n \in Z`,
  2. `tg x/2=3/4`, `x_2=arctg 3/4+2\pi n`, `n \in Z`.

Odpoveď. `x_1=2 arctg 2+2\pi n, n \in Z`, `x_2=arctg 3/4+2\pi n`, `n \in Z`.

Zavedenie pomocného uhla

V goniometrickej rovnici `a sin x + b cos x =c`, kde a,b,c sú koeficienty a x je premenná, vydeľte obe strany `sqrt (a^2+b^2)`:

`\frac a(sqrt (a^2+b^2)) sin x +` `\frac b(sqrt (a^2+b^2)) cos x =` `\frac c(sqrt (a^2) ) +b^2))“.

Koeficienty na ľavej strane majú vlastnosti sínus a kosínus, konkrétne súčet ich druhých mocnín je rovný 1 a ich moduly nie sú väčšie ako 1. Označme ich takto: `\frac a(sqrt (a^2 +b^2))=cos \varphi` , ` \frac b(sqrt (a^2+b^2)) =sin \varphi`, `\frac c(sqrt (a^2+b^2)) =C`, potom:

`cos \varphi sin x + sin \varphi cos x =C`.

Pozrime sa bližšie na nasledujúci príklad:

Príklad. Vyriešte rovnicu: `3 sin x+4 cos x=2`.

Riešenie. Vydelíme obe strany rovnosti `sqrt (3^2+4^2)`, dostaneme:

`\frac (3 sin x) (sqrt (3^2+4^2))+` `\frac(4 cos x)(sqrt (3^2+4^2))=` `\frac 2(sqrt (3^2+4^2)).

`3/5 hriechu x+4/5 čos x=2/5`.

Označme `3/5 = cos \varphi` , `4/5=sin \varphi`. Keďže `sin \varphi>0`, `cos \varphi>0`, potom berieme `\varphi=arcsin 4/5` ako pomocný uhol. Potom svoju rovnosť zapíšeme v tvare:

`cos \varphi sin x+sin \varphi cos x=2/5`

Použitím vzorca pre súčet uhlov pre sínus zapíšeme našu rovnosť v nasledujúcom tvare:

`sin (x+\varphi)=2/5`,

`x+\varphi=(-1)^n arcsin 2/5+ \pi n`, `n \in Z`,

`x=(-1)^n arcsin 2/5-` `arcsin 4/5+ \pi n`, `n \in Z`.

Odpoveď. `x=(-1)^n arcsin 2/5-` `arcsin 4/5+ \pi n`, `n \in Z`.

Zlomkové racionálne goniometrické rovnice

Ide o rovnosti so zlomkami, ktorých čitateľ a menovateľ obsahuje goniometrické funkcie.

Príklad. Vyriešte rovnicu. `\frac (sin x)(1+cos x)=1-cos x`.

Riešenie. Vynásobte a vydeľte pravú stranu rovnosti `(1+cos x)`. V dôsledku toho dostaneme:

`\frac (sin x)(1+cos x)=` `\frac ((1-cos x)(1+cos x))(1+cos x)`

`\frac (sin x)(1+cos x)=` `\frac (1-cos^2 x)(1+cos x)`

`\frac (sin x)(1+cos x)=` `\frac (sin^2 x)(1+cos x)`

`\frac (sin x)(1+cos x)-` `\frac (sin^2 x)(1+cos x)=0`

`\frac (sin x-sin^2 x)(1+cos x)=0`

Ak vezmeme do úvahy, že menovateľ nemôže byť rovný nule, dostaneme `1+cos x \ne 0`, `cos x \ne -1`, ` x \ne \pi+2\pi n, n \in Z`.

Dajme rovnítko medzi čitateľom zlomku a nulou: `sin x-sin^2 x=0`, `sin x(1-sin x)=0`. Potom „sin x=0“ alebo „1-sin x=0“.

  1. `sin x=0`, `x=\pi n`, `n \in Z`
  2. `1-sin x=0`, `sin x=-1`, `x=\pi /2+2\pi n, n \in Z`.

Vzhľadom na to, že ` x \ne \pi+2\pi n, n \in Z`, riešenia sú `x=2\pi n, n \in Z` a `x=\pi /2+2\pi n` , `n \in Z`.

Odpoveď. `x=2\pi n`, `n \in Z`, `x=\pi /2+2\pi n`, `n \in Z`.

Trigonometria a najmä trigonometrické rovnice sa používajú takmer vo všetkých oblastiach geometrie, fyziky a inžinierstva. Štúdium začína v 10. ročníku, vždy sú úlohy na Jednotnú štátnu skúšku, preto si skúste zapamätať všetky vzorce goniometrických rovníc - určite sa vám budú hodiť!

Nemusíte sa ich však ani učiť naspamäť, hlavné je pochopiť podstatu a vedieť ju odvodiť. Nie je to také ťažké, ako sa zdá. Presvedčte sa sami sledovaním videa.

Vyžaduje znalosť základných vzorcov trigonometrie – súčet druhých mocnín sínusu a kosínusu, vyjadrenie dotyčnice cez sínus a kosínus a iné. Pre tých, ktorí ich zabudli alebo ich nepoznajú, odporúčame prečítať si článok „“.
Základné goniometrické vzorce teda poznáme, je čas ich využiť v praxi. Riešenie goniometrických rovníc so správnym prístupom je to celkom vzrušujúca aktivita, ako napríklad riešenie Rubikovej kocky.

Už podľa samotného názvu je zrejmé, že goniometrická rovnica je rovnica, v ktorej je neznáma pod znamienkom goniometrickej funkcie.
Existujú takzvané najjednoduchšie goniometrické rovnice. Takto vyzerajú: sinx = a, cos x = a, tan x = a. Uvažujme ako riešiť takéto goniometrické rovnice, pre názornosť použijeme už známy trigonometrický kruh.

sinx = a

cos x = a

tan x = a

detská postieľka x = a

Akákoľvek goniometrická rovnica sa rieši v dvoch fázach: rovnicu zredukujeme na jej najjednoduchší tvar a potom ju vyriešime ako jednoduchú goniometrickú rovnicu.
Existuje 7 hlavných metód, ktorými sa riešia goniometrické rovnice.

  1. Variabilná substitúcia a substitučná metóda

  2. Vyriešte rovnicu 2cos 2 (x + /6) – 3sin( /3 – x) +1 = 0

    Pomocou redukčných vzorcov dostaneme:

    2cos 2 (x + /6) – 3cos(x + /6) +1 = 0

    Nahraďte cos(x + /6) y, aby ste to zjednodušili a získali obvyklú kvadratickú rovnicu:

    2 roky 2 – 3 roky + 1 + 0

    Korene ktorých sú y 1 = 1, y 2 = 1/2

    Teraz poďme v opačnom poradí

    Dosadíme nájdené hodnoty y a získame dve možnosti odpovede:

  3. Riešenie goniometrických rovníc pomocou faktorizácie

  4. Ako vyriešiť rovnicu sin x + cos x = 1?

    Posuňme všetko doľava tak, aby 0 zostala vpravo:

    sin x + cos x – 1 = 0

    Použime vyššie uvedené identity na zjednodušenie rovnice:

    hriech x – 2 sin 2 (x/2) = 0

    Rozložme na faktor:

    2 sin(x/2) * cos(x/2) - 2 sin 2 (x/2) = 0

    2sin(x/2) * = 0

    Dostaneme dve rovnice

  5. Redukcia na homogénnu rovnicu

  6. Rovnica je homogénna vzhľadom na sínus a kosínus, ak sa všetky jej členy vzťahujú na sínus a kosínus rovnakej mocniny rovnakého uhla. Ak chcete vyriešiť homogénnu rovnicu, postupujte takto:

    a) preniesť všetkých svojich členov na ľavú stranu;

    b) vyňať všetky spoločné faktory zo zátvoriek;

    c) prirovnať všetky faktory a zátvorky k 0;

    d) v zátvorkách sa získa homogénna rovnica nižšieho stupňa, ktorá je zase rozdelená na sínus alebo kosínus vyššieho stupňa;

    e) vyriešte výslednú rovnicu pre tg.

    Vyriešte rovnicu 3sin 2 x + 4 sin x cos x + 5 cos 2 x = 2

    Použime vzorec sin 2 x + cos 2 x = 1 a zbavme sa otvorenej dvojky vpravo:

    3 sin 2 x + 4 sin x cos x + 5 cos x = 2 sin 2 x + 2 cos 2 x

    sin 2 x + 4 sin x cos x + 3 cos 2 x = 0

    Vydeliť cos x:

    tg 2 x + 4 tg x + 3 = 0

    Nahraďte tan x za y a získajte kvadratickú rovnicu:

    y 2 + 4y +3 = 0, ktorých korene sú y 1 = 1, y 2 = 3

    Odtiaľto nájdeme dve riešenia pôvodnej rovnice:

    x 2 = arktan 3 + k

  7. Riešenie rovníc cez prechod do polovičného uhla

  8. Vyriešte rovnicu 3sin x – 5cos x = 7

    Prejdime na x/2:

    6sin(x/2) * cos(x/2) – 5cos 2 (x/2) + 5sin 2 (x/2) = 7sin 2 (x/2) + 7cos 2 (x/2)

    Presuňme všetko doľava:

    2sin 2 (x/2) – 6sin(x/2) * cos(x/2) + 12cos 2 (x/2) = 0

    Vydeliť cos(x/2):

    tg 2 (x/2) – 3 tg (x/2) + 6 = 0

  9. Zavedenie pomocného uhla

  10. Na zváženie si zoberme rovnicu v tvare: a sin x + b cos x = c,

    kde a, b, c sú nejaké ľubovoľné koeficienty a x je neznáma.

    Vydeľme obe strany rovnice takto:

    Teraz majú koeficienty rovnice podľa trigonometrických vzorcov vlastnosti sin a cos, a to: ich modul nie je väčší ako 1 a súčet štvorcov = 1. Označme ich ako cos a sin, kde - to je takzvaný pomocný uhol. Potom bude mať rovnica tvar:

    cos * sin x + sin * cos x = C

    alebo sin(x +) = C

    Riešenie tejto najjednoduchšej goniometrickej rovnice je

    x = (-1) k * arcsin C - + k, kde

    Treba poznamenať, že označenia cos a sin sú vzájomne zameniteľné.

    Vyriešte rovnicu sin 3x – cos 3x = 1

    Koeficienty v tejto rovnici sú:

    a = , b = -1, takže obe strany vydeľte = 2

Pri riešení mnohých matematické problémy, najmä tie, ktoré sa vyskytnú pred 10. ročníkom, je jasne definované poradie vykonaných akcií, ktoré povedú k cieľu. Medzi takéto problémy patria napríklad lineárne a kvadratické rovnice, lineárne a kvadratické nerovnosti, zlomkové rovnice a rovnice, ktoré sa redukujú na kvadratické. Princíp úspešného riešenia každého zo spomínaných problémov je nasledovný: treba si ujasniť, aký typ problému riešite, zapamätať si potrebnú postupnosť úkonov, ktoré povedú k želanému výsledku, t.j. odpovedzte a postupujte podľa týchto krokov.

Je zrejmé, že úspech alebo neúspech pri riešení konkrétneho problému závisí najmä od toho, ako správne je určený typ riešenej rovnice, ako správne je reprodukovaná postupnosť všetkých etáp jej riešenia. Samozrejme, v tomto prípade je potrebné mať zručnosti na vykonávanie identických transformácií a výpočtov.

Iná situácia je s goniometrické rovnice. Nie je vôbec ťažké zistiť, že rovnica je trigonometrická. Ťažkosti vznikajú pri určovaní postupnosti akcií, ktoré by viedli k správnej odpovedi.

Niekedy je ťažké určiť jej typ na základe vzhľadu rovnice. A bez znalosti typu rovnice je takmer nemožné vybrať si tú správnu z niekoľkých desiatok goniometrických vzorcov.

Ak chcete vyriešiť trigonometrickú rovnicu, musíte vyskúšať:

1. priviesť všetky funkcie zahrnuté v rovnici do „rovnakých uhlov“;
2. priviesť rovnicu k „identickým funkciám“;
3. faktor ľavej strany rovnice atď.

Uvažujme základné metódy riešenia goniometrických rovníc.

I. Redukcia na najjednoduchšie goniometrické rovnice

Schéma riešenia

Krok 1. Vyjadrite goniometrickú funkciu pomocou známych komponentov.

Krok 2. Nájdite argument funkcie pomocou vzorcov:

cos x = a; x = ±arccos a + 2πn, n ЄZ.

hriech x = a; x = (-1) n arcsin a + πn, n Є Z.

tan x = a; x = arctan a + πn, n Є Z.

ctg x = a; x = arcctg a + πn, n Є Z.

Krok 3. Nájdite neznámu premennú.

Príklad.

2 cos(3x – π/4) = -√2.

Riešenie.

1) cos(3x – π/4) = -√2/2.

2) 3x – π/4 = ±(π – π/4) + 2πn, n Є Z;

3x – π/4 = ±3π/4 + 2πn, n Є Z.

3) 3x = ±3π/4 + π/4 + 2πn, n Є Z;

x = ±3π/12 + π/12 + 2πn/3, n Є Z;

x = ±π/4 + π/12 + 2πn/3, n Є Z.

Odpoveď: ±π/4 + π/12 + 2πn/3, n Є Z.

II. Variabilná výmena

Schéma riešenia

Krok 1. Redukujte rovnicu na algebraický tvar vzhľadom na jednu z goniometrických funkcií.

Krok 2. Výslednú funkciu označíme premennou t (v prípade potreby zaveďte obmedzenia na t).

Krok 3. Výslednú algebraickú rovnicu zapíšte a vyriešte.

Krok 4. Vykonajte spätnú výmenu.

Krok 5. Vyriešte najjednoduchšiu goniometrickú rovnicu.

Príklad.

2cos 2 (x/2) – 5sin (x/2) – 5 = 0.

Riešenie.

1) 2(1 – sin 2 (x/2)) – 5sin (x/2) – 5 = 0;

2 sin 2 (x/2) + 5 sin (x/2) + 3 = 0.

2) Nech sin (x/2) = t, kde |t| ≤ 1.

3) 2t2 + 5t + 3 = 0;

t = 1 alebo e = -3/2, nespĺňa podmienku |t| ≤ 1.

4) sin(x/2) = 1.

5) x/2 = π/2 + 2πn, n Є Z;

x = π + 4πn, n Є Z.

Odpoveď: x = π + 4πn, n Є Z.

III. Metóda redukcie poradia rovníc

Schéma riešenia

Krok 1. Nahraďte túto rovnicu lineárnou pomocou vzorca na zníženie stupňa:

sin 2 x = 1/2 · (1 – cos 2x);

cos 2 x = 1/2 · (1 + cos 2x);

tg 2 x = (1 – cos 2x) / (1 + cos 2x).

Krok 2. Výslednú rovnicu riešte metódami I a II.

Príklad.

cos 2x + cos 2 x = 5/4.

Riešenie.

1) cos 2x + 1/2 · (1 + cos 2x) = 5/4.

2) cos 2x + 1/2 + 1/2 · cos 2x = 5/4;

3/2 cos 2x = 3/4;

2x = ±π/3 + 2πn, n Є Z;

x = ±π/6 + πn, n Є Z.

Odpoveď: x = ±π/6 + πn, n Є Z.

IV. Homogénne rovnice

Schéma riešenia

Krok 1. Zredukujte túto rovnicu do tvaru

a) a sin x + b cos x = 0 (homogénna rovnica prvého stupňa)

alebo do výhľadu

b) a sin 2 x + b sin x · cos x + c cos 2 x = 0 (homogénna rovnica druhého stupňa).

Krok 2. Vydeľte obe strany rovnice

a) cos x ≠ 0;

b) cos 2 x ≠ 0;

a získajte rovnicu pre tan x:

a) tan x + b = 0;

b) tan 2 x + b arktan x + c = 0.

Krok 3. Riešte rovnicu pomocou známych metód.

Príklad.

5 sin 2 x + 3 sin x cos x – 4 = 0.

Riešenie.

1) 5sin 2 x + 3sin x · cos x – 4(sin 2 x + cos 2 x) = 0;

5sin 2 x + 3sin x · cos x – 4sin² x – 4cos 2 x = 0;

sin 2 x + 3 sin x · cos x – 4cos 2 x = 0/cos 2 x ≠ 0.

2) tg 2 x + 3 tg x – 4 = 0.

3) Nech tg x = t, potom

t2 + 3t – 4 = 0;

t = 1 alebo t = -4, čo znamená

tg x = 1 alebo tg x = -4.

Z prvej rovnice x = π/4 + πn, n Є Z; z druhej rovnice x = -arctg 4 + πk, k Є Z.

Odpoveď: x = π/4 + πn, n Є Z; x = -arctg 4 + πk, k Є Z.

V. Metóda transformácie rovnice pomocou goniometrických vzorcov

Schéma riešenia

Krok 1. Pomocou všetkých možných goniometrických vzorcov zredukujte túto rovnicu na rovnicu riešenú metódami I, II, III, IV.

Krok 2. Vyriešte výslednú rovnicu pomocou známych metód.

Príklad.

hriech x + hriech 2x + hriech 3x = 0.

Riešenie.

1) (sin x + sin 3x) + sin 2x = 0;

2sin 2x cos x + sin 2x = 0.

2) sin 2x (2cos x + 1) = 0;

sin 2x = 0 alebo 2cos x + 1 = 0;

Z prvej rovnice 2x = π/2 + πn, n Є Z; z druhej rovnice cos x = -1/2.

Máme x = π/4 + πn/2, n Є Z; z druhej rovnice x = ±(π – π/3) + 2πk, k Є Z.

V dôsledku toho x = π/4 + πn/2, n Є Z; x = ±2π/3 + 2πk, k Є Z.

Odpoveď: x = π/4 + πn/2, n Є Z; x = ±2π/3 + 2πk, k Є Z.

Schopnosť a zručnosť riešiť goniometrické rovnice je veľmi dobrá dôležité, ich rozvoj si vyžaduje značné úsilie, tak zo strany žiaka, ako aj zo strany učiteľa.

S riešením goniometrických rovníc sú spojené mnohé problémy stereometrie, fyziky atď. Proces riešenia takýchto úloh zahŕňa mnohé z vedomostí a zručností, ktoré sa získavajú štúdiom prvkov trigonometrie.

Goniometrické rovnice zaujímajú dôležité miesto v procese učenia sa matematiky a osobnostného rozvoja vo všeobecnosti.

Stále máte otázky? Neviete, ako riešiť goniometrické rovnice?
Ak chcete získať pomoc od tútora, zaregistrujte sa.
Prvá lekcia je zadarmo!

webová stránka, pri kopírovaní celého materiálu alebo jeho časti je potrebný odkaz na zdroj.

Video kurz „Získaj A“ obsahuje všetky témy potrebné na úspešné absolvovanie jednotnej štátnej skúšky z matematiky so 60-65 bodmi. Kompletne všetky úlohy 1-13 Profilovej jednotnej štátnej skúšky z matematiky. Vhodné aj na zloženie Základnej jednotnej štátnej skúšky z matematiky. Ak chcete zložiť jednotnú štátnu skúšku s 90-100 bodmi, musíte časť 1 vyriešiť za 30 minút a bezchybne!

Prípravný kurz na Jednotnú štátnu skúšku pre ročníky 10-11, ako aj pre učiteľov. Všetko, čo potrebujete na vyriešenie 1. časti Jednotnej štátnej skúšky z matematiky (prvých 12 úloh) a 13. úlohy (trigonometria). A to je na Jednotnej štátnej skúške viac ako 70 bodov a nezaobíde sa bez nich ani 100-bodový študent, ani študent humanitných vied.

Všetka potrebná teória. Rýchle riešenia, úskalia a tajomstvá Jednotnej štátnej skúšky. Všetky aktuálne úlohy 1. časti z FIPI Task Bank boli analyzované. Kurz plne vyhovuje požiadavkám Jednotnej štátnej skúšky 2018.

Kurz obsahuje 5 veľkých tém, každá po 2,5 hodiny. Každá téma je daná od začiatku, jednoducho a jasne.

Stovky úloh jednotnej štátnej skúšky. Slovné úlohy a teória pravdepodobnosti. Jednoduché a ľahko zapamätateľné algoritmy na riešenie problémov. Geometria. Teória, referenčný materiál, analýza všetkých typov úloh jednotnej štátnej skúšky. Stereometria. Záludné riešenia, užitočné cheat sheets, rozvoj priestorovej predstavivosti. Trigonometria od nuly k problému 13. Pochopenie namiesto napchávania sa. Jasné vysvetlenie zložitých pojmov. Algebra. Odmocniny, mocniny a logaritmy, funkcia a derivácia. Podklad pre riešenie zložitých problémov 2. časti jednotnej štátnej skúšky.

© 2024 skudelnica.ru -- Láska, zrada, psychológia, rozvod, city, hádky