தசம மடக்கைகளின் பண்புகள். மடக்கையின் வரையறை மற்றும் அதன் பண்புகள்: கோட்பாடு மற்றும் சிக்கலைத் தீர்ப்பது

வீடு / ஏமாற்றும் கணவன்

முக்கிய பண்புகள்.

  1. logax + logay = loga(x y);
  2. logax - logay = loga (x: y).

ஒரே மாதிரியான மைதானங்கள்

பதிவு6 4 + பதிவு6 9.

இப்போது பணியை கொஞ்சம் சிக்கலாக்குவோம்.

மடக்கைகளைத் தீர்ப்பதற்கான எடுத்துக்காட்டுகள்

மடக்கையின் அடிப்படை அல்லது வாதம் ஒரு சக்தியாக இருந்தால் என்ன செய்வது? பின்வரும் விதிகளின்படி இந்த பட்டத்தின் அடுக்கு மடக்கையின் அடையாளத்திலிருந்து எடுக்கப்படலாம்:

நிச்சயமாக, மடக்கையின் ODZ கவனிக்கப்பட்டால் இந்த விதிகள் அனைத்தும் அர்த்தமுள்ளதாக இருக்கும்: a > 0, a ≠ 1, x >

பணி. வெளிப்பாட்டின் பொருளைக் கண்டறியுங்கள்:

புதிய அடித்தளத்திற்கு மாற்றம்

மடக்கை logax கொடுக்கலாம். பிறகு c > 0 மற்றும் c ≠ 1 போன்ற எந்த எண்ணுக்கும், சமத்துவம் உண்மையாக இருக்கும்:

பணி. வெளிப்பாட்டின் பொருளைக் கண்டறியுங்கள்:

மேலும் பார்க்க:


மடக்கையின் அடிப்படை பண்புகள்

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.



அடுக்கு 2.718281828. அடுக்குகளை நினைவில் கொள்ள, நீங்கள் விதியைப் படிக்கலாம்: அடுக்கு 2.7 க்கு சமம் மற்றும் லியோ நிகோலாவிச் டால்ஸ்டாய் பிறந்த ஆண்டை விட இரண்டு முறை.

மடக்கைகளின் அடிப்படை பண்புகள்

இந்த விதியை அறிந்தால், நீங்கள் அறிவீர்கள் சரியான மதிப்புகண்காட்சியாளர்கள், மற்றும் லியோ டால்ஸ்டாயின் பிறந்த தேதி.


மடக்கைகளுக்கான எடுத்துக்காட்டுகள்

மடக்கை வெளிப்பாடுகள்

எடுத்துக்காட்டு 1.
A). x=10ac^2 (a>0,c>0).

பண்புகள் 3.5 ஐப் பயன்படுத்தி நாம் கணக்கிடுகிறோம்

2.

3.

4. எங்கே .



எடுத்துக்காட்டு 2. x என்றால் கண்டுபிடி


எடுத்துக்காட்டு 3. மடக்கைகளின் மதிப்பைக் கொடுக்கலாம்

பதிவு(x) என்றால் கணக்கிடவும்




மடக்கைகளின் அடிப்படை பண்புகள்

மடக்கைகள், எந்த எண்களைப் போலவே, எல்லா வகையிலும் சேர்க்கலாம், கழிக்கலாம் மற்றும் மாற்றலாம். ஆனால் மடக்கைகள் சாதாரண எண்கள் அல்ல என்பதால், இங்கே விதிகள் உள்ளன, அவை அழைக்கப்படுகின்றன முக்கிய பண்புகள்.

இந்த விதிகளை நீங்கள் நிச்சயமாக அறிந்து கொள்ள வேண்டும் - அவை இல்லாமல், ஒரு தீவிர மடக்கை சிக்கலையும் தீர்க்க முடியாது. கூடுதலாக, அவற்றில் மிகக் குறைவு - நீங்கள் எல்லாவற்றையும் ஒரே நாளில் கற்றுக்கொள்ளலாம். எனவே ஆரம்பிக்கலாம்.

மடக்கைகளைச் சேர்த்தல் மற்றும் கழித்தல்

ஒரே தளங்களைக் கொண்ட இரண்டு மடக்கைகளைக் கவனியுங்கள்: லோகாக்ஸ் மற்றும் லோகே. பின்னர் அவற்றைச் சேர்க்கலாம் மற்றும் கழிக்கலாம், மேலும்:

  1. logax + logay = loga(x y);
  2. logax - logay = loga (x: y).

எனவே, மடக்கைகளின் கூட்டுத்தொகை உற்பத்தியின் மடக்கைக்கு சமம், மற்றும் வேறுபாடு பகுதியின் மடக்கைக்கு சமம். குறிப்பு: முக்கிய தருணம்இங்கே - ஒரே மாதிரியான மைதானங்கள். காரணங்கள் வேறுபட்டால், இந்த விதிகள் வேலை செய்யாது!

இந்த சூத்திரங்கள் மடக்கை வெளிப்பாட்டின் தனிப்பட்ட பகுதிகள் கருதப்படாவிட்டாலும் கணக்கிட உதவும் ("மடக்கை என்றால் என்ன" என்ற பாடத்தைப் பார்க்கவும்). எடுத்துக்காட்டுகளைப் பாருங்கள் மற்றும் பார்க்கவும்:

மடக்கைகள் ஒரே அடிப்படைகளைக் கொண்டிருப்பதால், கூட்டுச் சூத்திரத்தைப் பயன்படுத்துகிறோம்:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2.

பணி. வெளிப்பாட்டின் மதிப்பைக் கண்டறியவும்: log2 48 - log2 3.

அடிப்படைகள் ஒரே மாதிரியானவை, நாங்கள் வேறுபாடு சூத்திரத்தைப் பயன்படுத்துகிறோம்:
log2 48 - log2 3 = log2 (48: 3) = log2 16 = 4.

பணி. வெளிப்பாட்டின் மதிப்பைக் கண்டறியவும்: log3 135 - log3 5.

மீண்டும் அடிப்படைகள் ஒரே மாதிரியானவை, எனவே எங்களிடம் உள்ளது:
பதிவு3 135 - பதிவு3 5 = பதிவு3 (135: 5) = பதிவு3 27 = 3.

நீங்கள் பார்க்க முடியும் என, அசல் வெளிப்பாடுகள் "மோசமான" மடக்கைகளால் ஆனவை, அவை தனித்தனியாக கணக்கிடப்படவில்லை. ஆனால் மாற்றங்களுக்குப் பிறகு, முற்றிலும் சாதாரண எண்கள் பெறப்படுகின்றன. இந்த உண்மையின் அடிப்படையில் பலர் கட்டமைக்கப்பட்டுள்ளனர் சோதனை தாள்கள். ஆம், ஒருங்கிணைந்த மாநிலத் தேர்வில் அனைத்து தீவிரத்தன்மையிலும் (சில நேரங்களில் எந்த மாற்றமும் இல்லாமல்) சோதனை போன்ற வெளிப்பாடுகள் வழங்கப்படுகின்றன.

மடக்கையிலிருந்து அடுக்குகளை பிரித்தெடுத்தல்

அதை கவனிப்பது எளிது கடைசி விதிமுதல் இரண்டைப் பின்பற்றுகிறது. ஆனால் எப்படியும் அதை நினைவில் கொள்வது நல்லது - சில சந்தர்ப்பங்களில் இது கணக்கீடுகளின் அளவைக் கணிசமாகக் குறைக்கும்.

நிச்சயமாக, மடக்கையின் ODZ கவனிக்கப்பட்டால் இந்த விதிகள் அனைத்தும் அர்த்தமுள்ளதாக இருக்கும்: a > 0, a ≠ 1, x > 0. மேலும் ஒன்று: எல்லா சூத்திரங்களையும் இடமிருந்து வலமாக மட்டுமல்லாமல், நேர்மாறாகவும் பயன்படுத்த கற்றுக்கொள்ளுங்கள். , அதாவது மடக்கை அடையாளத்திற்கு முன் உள்ள எண்களை மடக்கையிலேயே உள்ளிடலாம். இதுவே பெரும்பாலும் தேவைப்படுகிறது.

பணி. வெளிப்பாட்டின் மதிப்பைக் கண்டறியவும்: log7 496.

முதல் சூத்திரத்தைப் பயன்படுத்தி வாதத்தின் பட்டத்தை அகற்றுவோம்:
பதிவு7 496 = 6 பதிவு7 49 = 6 2 = 12

பணி. வெளிப்பாட்டின் பொருளைக் கண்டறியுங்கள்:

வகுப்பில் ஒரு மடக்கை உள்ளது என்பதை நினைவில் கொள்ளவும், அதன் அடிப்படை மற்றும் வாதம் சரியான சக்திகள்: 16 = 24; 49 = 72. எங்களிடம் உள்ளது:

கடைசி உதாரணத்திற்கு சில தெளிவு தேவை என்று நினைக்கிறேன். மடக்கைகள் எங்கே போயின? வரை கடைசி தருணம்நாங்கள் வகுப்போடு மட்டுமே வேலை செய்கிறோம்.

மடக்கை சூத்திரங்கள். மடக்கை எடுத்துக்காட்டுகள் தீர்வுகள்.

அங்கு நிற்கும் மடக்கையின் அடிப்படை மற்றும் வாதத்தை சக்திகளின் வடிவத்தில் முன்வைத்து, அடுக்குகளை வெளியே எடுத்தோம் - எங்களுக்கு ஒரு "மூன்று-அடுக்கு" பின்னம் கிடைத்தது.

இப்போது முக்கிய பகுதியைப் பார்ப்போம். எண் மற்றும் வகுப்பில் ஒரே எண் உள்ளது: log2 7. log2 7 ≠ 0 என்பதால், நாம் பின்னத்தை குறைக்கலாம் - 2/4 வகுப்பில் இருக்கும். எண்கணித விதிகளின்படி, நான்கையும் எண்ணுக்கு மாற்றலாம், அதுதான் செய்யப்பட்டது. இதன் விளைவாக பதில் வந்தது: 2.

புதிய அடித்தளத்திற்கு மாற்றம்

மடக்கைகளைச் சேர்ப்பதற்கும் கழிப்பதற்கும் விதிகளைப் பற்றி பேசுகையில், அவை ஒரே அடிப்படைகளுடன் மட்டுமே செயல்படுகின்றன என்பதை நான் குறிப்பாக வலியுறுத்தினேன். காரணங்கள் வேறுபட்டால் என்ன செய்வது? அவை ஒரே எண்ணின் சரியான சக்திகளாக இல்லாவிட்டால் என்ன செய்வது?

புதிய அடித்தளத்திற்கு மாறுவதற்கான சூத்திரங்கள் மீட்புக்கு வருகின்றன. அவற்றை ஒரு தேற்றத்தின் வடிவத்தில் உருவாக்குவோம்:

மடக்கை logax கொடுக்கலாம். பிறகு c > 0 மற்றும் c ≠ 1 போன்ற எந்த எண்ணுக்கும், சமத்துவம் உண்மையாக இருக்கும்:

குறிப்பாக, c = x ஐ அமைத்தால், நமக்கு கிடைக்கும்:

இரண்டாவது சூத்திரத்திலிருந்து, மடக்கையின் அடிப்படை மற்றும் வாதத்தை மாற்றலாம், ஆனால் இந்த விஷயத்தில் முழு வெளிப்பாடும் "திரும்பியது", அதாவது. மடக்கை வகுப்பில் தோன்றும்.

இந்த சூத்திரங்கள் சாதாரண எண் வெளிப்பாடுகளில் அரிதாகவே காணப்படுகின்றன. அவை எவ்வளவு வசதியானவை என்பதை தீர்மானிப்பதன் மூலம் மட்டுமே மதிப்பிட முடியும் மடக்கை சமன்பாடுகள்மற்றும் ஏற்றத்தாழ்வுகள்.

இருப்பினும், ஒரு புதிய அடித்தளத்திற்குச் செல்வதைத் தவிர, தீர்க்க முடியாத பிரச்சினைகள் உள்ளன. இவற்றில் ஒன்றிரண்டு பார்ப்போம்:

பணி. வெளிப்பாட்டின் மதிப்பைக் கண்டறியவும்: log5 16 log2 25.

இரண்டு மடக்கைகளின் வாதங்களும் சரியான அதிகாரங்களைக் கொண்டிருக்கின்றன என்பதைக் கவனியுங்கள். குறிகாட்டிகளை வெளியே எடுப்போம்: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

இப்போது இரண்டாவது மடக்கை "தலைகீழ்" செய்வோம்:

காரணிகளை மறுசீரமைக்கும்போது தயாரிப்பு மாறாது என்பதால், நாங்கள் அமைதியாக நான்கு மற்றும் இரண்டைப் பெருக்கி, பின்னர் மடக்கைகளைக் கையாள்வோம்.

பணி. வெளிப்பாட்டின் மதிப்பைக் கண்டறியவும்: log9 100 lg 3.

முதல் மடக்கையின் அடிப்படை மற்றும் வாதம் துல்லியமான சக்திகள். இதை எழுதி குறிகாட்டிகளை அகற்றுவோம்:

இப்போது புதிய தளத்திற்குச் செல்வதன் மூலம் தசம மடக்கையிலிருந்து விடுபடலாம்:

அடிப்படை மடக்கை அடையாளம்

பெரும்பாலும் தீர்வுச் செயல்பாட்டில், கொடுக்கப்பட்ட தளத்திற்கு மடக்கையாக எண்ணைக் குறிப்பிடுவது அவசியம். இந்த வழக்கில், பின்வரும் சூத்திரங்கள் எங்களுக்கு உதவும்:

முதல் வழக்கில், n என்பது வாதத்தில் அடுக்கு ஆகும். எண் n என்பது முற்றிலும் எதுவாகவும் இருக்கலாம், ஏனெனில் இது ஒரு மடக்கை மதிப்பு.

இரண்டாவது சூத்திரம் உண்மையில் ஒரு பாராபிராஸ்டு வரையறை. அதுவே அழைக்கப்படுகிறது: .

உண்மையில், b என்ற எண்ணை ஒரு சக்தியாக உயர்த்தினால் என்ன நடக்கும், இந்த சக்திக்கு b என்ற எண் a எண்ணைக் கொடுக்கும்? அது சரி: முடிவு அதே எண் a. இந்தப் பத்தியை மீண்டும் கவனமாகப் படியுங்கள் - பலர் அதில் சிக்கிக் கொள்கிறார்கள்.

ஒரு புதிய தளத்திற்குச் செல்வதற்கான சூத்திரங்களைப் போலவே, அடிப்படை மடக்கை அடையாளம் சில சமயங்களில் சாத்தியமான ஒரே தீர்வு.

பணி. வெளிப்பாட்டின் பொருளைக் கண்டறியுங்கள்:

log25 64 = log5 8 - மடக்கையின் அடிப்படை மற்றும் வாதத்திலிருந்து சதுரத்தை எடுத்துக் கொண்டது என்பதை நினைவில் கொள்ளவும். ஒரே அடிப்படையுடன் சக்திகளை பெருக்குவதற்கான விதிகளை கணக்கில் எடுத்துக்கொள்வதால், நாம் பெறுகிறோம்:

யாருக்காவது தெரியாவிட்டால், இது ஒருங்கிணைந்த மாநிலத் தேர்வின் உண்மையான பணியாகும் :)

மடக்கை அலகு மற்றும் மடக்கை பூஜ்யம்

முடிவில், பண்புகள் என்று அழைக்கப்பட முடியாத இரண்டு அடையாளங்களை நான் தருகிறேன் - மாறாக, அவை மடக்கையின் வரையறையின் விளைவுகள். அவர்கள் தொடர்ந்து சிக்கல்களில் தோன்றுகிறார்கள், ஆச்சரியப்படும் விதமாக, "மேம்பட்ட" மாணவர்களுக்கு கூட சிக்கல்களை உருவாக்குகிறார்கள்.

  1. லோகா = 1 ஆகும். ஒருமுறை மற்றும் அனைத்தையும் நினைவில் கொள்ளுங்கள்: அந்த தளத்தின் எந்த தளத்திற்கும் மடக்கை ஒன்றுக்கு சமம்.
  2. லோகா 1 = 0 ஆகும். அடிப்படை a எதுவும் இருக்கலாம், ஆனால் வாதத்தில் ஒன்று இருந்தால், மடக்கை பூஜ்ஜியத்திற்கு சமம்! ஏனெனில் a0 = 1 என்பது வரையறையின் நேரடி விளைவு.

அவ்வளவுதான் சொத்துக்கள். அவற்றை நடைமுறைக்குக் கொண்டுவருவதைப் பயிற்சி செய்யுங்கள்! பாடத்தின் தொடக்கத்தில் உள்ள ஏமாற்று தாளைப் பதிவிறக்கம் செய்து, அதை அச்சிட்டு, சிக்கல்களைத் தீர்க்கவும்.

மேலும் பார்க்க:

a அடிப்படையிலான b இன் மடக்கை வெளிப்பாட்டைக் குறிக்கிறது. மடக்கையைக் கணக்கிடுவது என்பது சமத்துவம் பூர்த்தி செய்யப்பட்ட ஒரு சக்தி x () ஐக் கண்டுபிடிப்பதாகும்

மடக்கையின் அடிப்படை பண்புகள்

மடக்கைகள் தொடர்பான அனைத்து சிக்கல்களும் எடுத்துக்காட்டுகளும் அவற்றின் அடிப்படையில் தீர்க்கப்படுவதால், மேலே உள்ள பண்புகளை அறிந்து கொள்வது அவசியம். மீதமுள்ள அயல்நாட்டு பண்புகளை இந்த சூத்திரங்களுடன் கணித கையாளுதல்கள் மூலம் பெறலாம்

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.

மடக்கைகளின் கூட்டுத்தொகை மற்றும் வேறுபாட்டிற்கான சூத்திரத்தைக் கணக்கிடும் போது (3.4) நீங்கள் அடிக்கடி சந்திப்பீர்கள். மீதமுள்ளவை சற்றே சிக்கலானவை, ஆனால் பல பணிகளில் சிக்கலான வெளிப்பாடுகளை எளிதாக்குவதற்கும் அவற்றின் மதிப்புகளைக் கணக்கிடுவதற்கும் அவை இன்றியமையாதவை.

மடக்கைகளின் பொதுவான வழக்குகள்

சில பொதுவான மடக்கைகள் அடிப்படை பத்து, அதிவேக அல்லது இரண்டாக இருக்கும்.
பத்தின் அடிப்படையிலான மடக்கை பொதுவாக தசம மடக்கை என்று அழைக்கப்படுகிறது மற்றும் இது வெறுமனே lg(x) ஆல் குறிக்கப்படுகிறது.

பதிவில் அடிப்படைகள் எழுதப்படவில்லை என்பது பதிவின் மூலம் தெளிவாகிறது. உதாரணத்திற்கு

இயற்கை மடக்கை என்பது ஒரு மடக்கை ஆகும், அதன் அடிப்பகுதி ஒரு அடுக்கு (ln(x) ஆல் குறிக்கப்படுகிறது).

அடுக்கு 2.718281828. அடுக்குகளை நினைவில் கொள்ள, நீங்கள் விதியைப் படிக்கலாம்: அடுக்கு 2.7 க்கு சமம் மற்றும் லியோ நிகோலாவிச் டால்ஸ்டாய் பிறந்த ஆண்டை விட இரண்டு முறை. இந்த விதியை அறிந்தால், அடுக்குகளின் சரியான மதிப்பு மற்றும் லியோ டால்ஸ்டாயின் பிறந்த தேதி இரண்டையும் நீங்கள் அறிவீர்கள்.

மற்றும் அடிப்படை இரண்டின் மற்றொரு முக்கியமான மடக்கை குறிக்கப்படுகிறது

ஒரு செயல்பாட்டின் மடக்கையின் வழித்தோன்றல் மாறியால் வகுக்கப்படும் ஒன்றிற்கு சமம்

ஒருங்கிணைந்த அல்லது ஆண்டிடெரிவேட்டிவ் மடக்கை உறவால் தீர்மானிக்கப்படுகிறது

மடக்கைகள் மற்றும் மடக்கைகள் தொடர்பான பல்வேறு வகையான சிக்கல்களைத் தீர்க்க கொடுக்கப்பட்ட பொருள் போதுமானது. பொருளைப் புரிந்துகொள்ள உங்களுக்கு உதவ, நான் சில பொதுவான உதாரணங்களைத் தருகிறேன் பள்ளி பாடத்திட்டம்மற்றும் பல்கலைக்கழகங்கள்.

மடக்கைகளுக்கான எடுத்துக்காட்டுகள்

மடக்கை வெளிப்பாடுகள்

எடுத்துக்காட்டு 1.
A). x=10ac^2 (a>0,c>0).

பண்புகள் 3.5 ஐப் பயன்படுத்தி நாம் கணக்கிடுகிறோம்

2.
மடக்கைகளின் வேறுபாட்டின் பண்பு மூலம் நம்மிடம் உள்ளது

3.
பண்புகள் 3.5 ஐப் பயன்படுத்துகிறோம்

4. எங்கே .

தோற்றத்தால் சிக்கலான வெளிப்பாடுபல விதிகளைப் பயன்படுத்துவது எளிமைப்படுத்தப்பட்டுள்ளது

மடக்கை மதிப்புகளைக் கண்டறிதல்

எடுத்துக்காட்டு 2. x என்றால் கண்டுபிடி

தீர்வு. கணக்கீட்டிற்கு, நாங்கள் கடைசி கால 5 மற்றும் 13 பண்புகளுக்குப் பயன்படுத்துகிறோம்

பதிவில் போட்டு புலம்புகிறோம்

அடிப்படைகள் சமமாக இருப்பதால், வெளிப்பாடுகளை சமன் செய்கிறோம்

மடக்கைகள். முதல் நிலை.

மடக்கைகளின் மதிப்பைக் கொடுக்கலாம்

பதிவு(x) என்றால் கணக்கிடவும்

தீர்வு: அதன் சொற்களின் கூட்டுத்தொகை மூலம் மடக்கை எழுத மாறியின் மடக்கையை எடுத்துக் கொள்வோம்.


மடக்கைகள் மற்றும் அவற்றின் பண்புகள் பற்றிய நமது அறிமுகத்தின் ஆரம்பம் இது. கணக்கீடுகளைப் பயிற்சி செய்யுங்கள், உங்கள் நடைமுறை திறன்களை வளப்படுத்துங்கள் - மடக்கை சமன்பாடுகளைத் தீர்க்க நீங்கள் பெறும் அறிவு விரைவில் உங்களுக்குத் தேவைப்படும். அத்தகைய சமன்பாடுகளைத் தீர்ப்பதற்கான அடிப்படை முறைகளைப் படித்த பிறகு, உங்கள் அறிவை மற்றொன்றுக்கு குறைவாகவே விரிவுபடுத்துவோம் முக்கியமான தலைப்புமடக்கை ஏற்றத்தாழ்வுகள்...

மடக்கைகளின் அடிப்படை பண்புகள்

மடக்கைகள், எந்த எண்களைப் போலவே, எல்லா வகையிலும் சேர்க்கலாம், கழிக்கலாம் மற்றும் மாற்றலாம். ஆனால் மடக்கைகள் சாதாரண எண்கள் அல்ல என்பதால், இங்கே விதிகள் உள்ளன, அவை அழைக்கப்படுகின்றன முக்கிய பண்புகள்.

இந்த விதிகளை நீங்கள் நிச்சயமாக அறிந்து கொள்ள வேண்டும் - அவை இல்லாமல், ஒரு தீவிர மடக்கை சிக்கலையும் தீர்க்க முடியாது. கூடுதலாக, அவற்றில் மிகக் குறைவு - நீங்கள் எல்லாவற்றையும் ஒரே நாளில் கற்றுக்கொள்ளலாம். எனவே ஆரம்பிக்கலாம்.

மடக்கைகளைச் சேர்த்தல் மற்றும் கழித்தல்

ஒரே தளங்களைக் கொண்ட இரண்டு மடக்கைகளைக் கவனியுங்கள்: லோகாக்ஸ் மற்றும் லோகே. பின்னர் அவற்றைச் சேர்க்கலாம் மற்றும் கழிக்கலாம், மேலும்:

  1. logax + logay = loga(x y);
  2. logax - logay = loga (x: y).

எனவே, மடக்கைகளின் கூட்டுத்தொகை உற்பத்தியின் மடக்கைக்கு சமம், மற்றும் வேறுபாடு பகுதியின் மடக்கைக்கு சமம். தயவுசெய்து கவனிக்கவும்: இங்கே முக்கிய புள்ளி ஒரே மாதிரியான மைதானங்கள். காரணங்கள் வேறுபட்டால், இந்த விதிகள் வேலை செய்யாது!

இந்த சூத்திரங்கள் மடக்கை வெளிப்பாட்டின் தனிப்பட்ட பகுதிகள் கருதப்படாவிட்டாலும் கணக்கிட உதவும் ("மடக்கை என்றால் என்ன" என்ற பாடத்தைப் பார்க்கவும்). எடுத்துக்காட்டுகளைப் பாருங்கள் மற்றும் பார்க்கவும்:

பணி. வெளிப்பாட்டின் மதிப்பைக் கண்டறியவும்: log6 4 + log6 9.

மடக்கைகள் ஒரே அடிப்படைகளைக் கொண்டிருப்பதால், கூட்டுச் சூத்திரத்தைப் பயன்படுத்துகிறோம்:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2.

பணி. வெளிப்பாட்டின் மதிப்பைக் கண்டறியவும்: log2 48 - log2 3.

அடிப்படைகள் ஒரே மாதிரியானவை, நாங்கள் வேறுபாடு சூத்திரத்தைப் பயன்படுத்துகிறோம்:
log2 48 - log2 3 = log2 (48: 3) = log2 16 = 4.

பணி. வெளிப்பாட்டின் மதிப்பைக் கண்டறியவும்: log3 135 - log3 5.

மீண்டும் அடிப்படைகள் ஒரே மாதிரியானவை, எனவே எங்களிடம் உள்ளது:
பதிவு3 135 - பதிவு3 5 = பதிவு3 (135: 5) = பதிவு3 27 = 3.

நீங்கள் பார்க்க முடியும் என, அசல் வெளிப்பாடுகள் "மோசமான" மடக்கைகளால் ஆனவை, அவை தனித்தனியாக கணக்கிடப்படவில்லை. ஆனால் மாற்றங்களுக்குப் பிறகு, முற்றிலும் சாதாரண எண்கள் பெறப்படுகின்றன. பல சோதனைகள் இந்த உண்மையை அடிப்படையாகக் கொண்டவை. ஆம், ஒருங்கிணைந்த மாநிலத் தேர்வில் அனைத்து தீவிரத்தன்மையிலும் (சில நேரங்களில் எந்த மாற்றமும் இல்லாமல்) சோதனை போன்ற வெளிப்பாடுகள் வழங்கப்படுகின்றன.

மடக்கையிலிருந்து அடுக்குகளை பிரித்தெடுத்தல்

இப்போது பணியை கொஞ்சம் சிக்கலாக்குவோம். மடக்கையின் அடிப்படை அல்லது வாதம் ஒரு சக்தியாக இருந்தால் என்ன செய்வது? பின்வரும் விதிகளின்படி இந்த பட்டத்தின் அடுக்கு மடக்கையின் அடையாளத்திலிருந்து எடுக்கப்படலாம்:

கடைசி விதி முதல் இரண்டைப் பின்பற்றுவதைப் பார்ப்பது எளிது. ஆனால் எப்படியும் அதை நினைவில் கொள்வது நல்லது - சில சந்தர்ப்பங்களில் இது கணக்கீடுகளின் அளவைக் கணிசமாகக் குறைக்கும்.

நிச்சயமாக, மடக்கையின் ODZ கவனிக்கப்பட்டால் இந்த விதிகள் அனைத்தும் அர்த்தமுள்ளதாக இருக்கும்: a > 0, a ≠ 1, x > 0. மேலும் ஒன்று: எல்லா சூத்திரங்களையும் இடமிருந்து வலமாக மட்டுமல்லாமல், நேர்மாறாகவும் பயன்படுத்த கற்றுக்கொள்ளுங்கள். , அதாவது மடக்கை அடையாளத்திற்கு முன் உள்ள எண்களை மடக்கையிலேயே உள்ளிடலாம்.

மடக்கைகளை எவ்வாறு தீர்ப்பது

இதுவே பெரும்பாலும் தேவைப்படுகிறது.

பணி. வெளிப்பாட்டின் மதிப்பைக் கண்டறியவும்: log7 496.

முதல் சூத்திரத்தைப் பயன்படுத்தி வாதத்தின் பட்டத்தை அகற்றுவோம்:
பதிவு7 496 = 6 பதிவு7 49 = 6 2 = 12

பணி. வெளிப்பாட்டின் பொருளைக் கண்டறியுங்கள்:

வகுப்பில் ஒரு மடக்கை உள்ளது என்பதை நினைவில் கொள்ளவும், அதன் அடிப்படை மற்றும் வாதம் சரியான சக்திகள்: 16 = 24; 49 = 72. எங்களிடம் உள்ளது:

கடைசி உதாரணத்திற்கு சில தெளிவு தேவை என்று நினைக்கிறேன். மடக்கைகள் எங்கே போயின? கடைசி நிமிடம் வரை நாங்கள் வகுப்போடு மட்டுமே வேலை செய்கிறோம். அங்கு நிற்கும் மடக்கையின் அடிப்படை மற்றும் வாதத்தை சக்திகளின் வடிவத்தில் முன்வைத்து, அடுக்குகளை வெளியே எடுத்தோம் - எங்களுக்கு ஒரு "மூன்று-அடுக்கு" பின்னம் கிடைத்தது.

இப்போது முக்கிய பகுதியைப் பார்ப்போம். எண் மற்றும் வகுப்பில் ஒரே எண் உள்ளது: log2 7. log2 7 ≠ 0 என்பதால், நாம் பின்னத்தை குறைக்கலாம் - 2/4 வகுப்பில் இருக்கும். எண்கணித விதிகளின்படி, நான்கையும் எண்ணுக்கு மாற்றலாம், அதுதான் செய்யப்பட்டது. இதன் விளைவாக பதில் வந்தது: 2.

புதிய அடித்தளத்திற்கு மாற்றம்

மடக்கைகளைச் சேர்ப்பதற்கும் கழிப்பதற்கும் விதிகளைப் பற்றி பேசுகையில், அவை ஒரே அடிப்படைகளுடன் மட்டுமே செயல்படுகின்றன என்பதை நான் குறிப்பாக வலியுறுத்தினேன். காரணங்கள் வேறுபட்டால் என்ன செய்வது? அவை ஒரே எண்ணின் சரியான சக்திகளாக இல்லாவிட்டால் என்ன செய்வது?

புதிய அடித்தளத்திற்கு மாறுவதற்கான சூத்திரங்கள் மீட்புக்கு வருகின்றன. அவற்றை ஒரு தேற்றத்தின் வடிவத்தில் உருவாக்குவோம்:

மடக்கை logax கொடுக்கலாம். பிறகு c > 0 மற்றும் c ≠ 1 போன்ற எந்த எண்ணுக்கும், சமத்துவம் உண்மையாக இருக்கும்:

குறிப்பாக, c = x ஐ அமைத்தால், நமக்கு கிடைக்கும்:

இரண்டாவது சூத்திரத்திலிருந்து, மடக்கையின் அடிப்படை மற்றும் வாதத்தை மாற்றலாம், ஆனால் இந்த விஷயத்தில் முழு வெளிப்பாடும் "திரும்பியது", அதாவது. மடக்கை வகுப்பில் தோன்றும்.

இந்த சூத்திரங்கள் சாதாரண எண் வெளிப்பாடுகளில் அரிதாகவே காணப்படுகின்றன. மடக்கை சமன்பாடுகள் மற்றும் ஏற்றத்தாழ்வுகளைத் தீர்க்கும்போது மட்டுமே அவை எவ்வளவு வசதியானவை என்பதை மதிப்பீடு செய்ய முடியும்.

இருப்பினும், ஒரு புதிய அடித்தளத்திற்குச் செல்வதைத் தவிர, தீர்க்க முடியாத பிரச்சினைகள் உள்ளன. இவற்றில் ஒன்றிரண்டு பார்ப்போம்:

பணி. வெளிப்பாட்டின் மதிப்பைக் கண்டறியவும்: log5 16 log2 25.

இரண்டு மடக்கைகளின் வாதங்களும் சரியான அதிகாரங்களைக் கொண்டிருக்கின்றன என்பதைக் கவனியுங்கள். குறிகாட்டிகளை வெளியே எடுப்போம்: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

இப்போது இரண்டாவது மடக்கை "தலைகீழ்" செய்வோம்:

காரணிகளை மறுசீரமைக்கும்போது தயாரிப்பு மாறாது என்பதால், நாங்கள் அமைதியாக நான்கு மற்றும் இரண்டைப் பெருக்கி, பின்னர் மடக்கைகளைக் கையாள்வோம்.

பணி. வெளிப்பாட்டின் மதிப்பைக் கண்டறியவும்: log9 100 lg 3.

முதல் மடக்கையின் அடிப்படை மற்றும் வாதம் துல்லியமான சக்திகள். இதை எழுதி குறிகாட்டிகளை அகற்றுவோம்:

இப்போது புதிய தளத்திற்குச் செல்வதன் மூலம் தசம மடக்கையிலிருந்து விடுபடலாம்:

அடிப்படை மடக்கை அடையாளம்

பெரும்பாலும் தீர்வுச் செயல்பாட்டில், கொடுக்கப்பட்ட தளத்திற்கு மடக்கையாக எண்ணைக் குறிப்பிடுவது அவசியம். இந்த வழக்கில், பின்வரும் சூத்திரங்கள் எங்களுக்கு உதவும்:

முதல் வழக்கில், n என்பது வாதத்தில் அடுக்கு ஆகும். எண் n என்பது முற்றிலும் எதுவாகவும் இருக்கலாம், ஏனெனில் இது ஒரு மடக்கை மதிப்பு.

இரண்டாவது சூத்திரம் உண்மையில் ஒரு பாராபிராஸ்டு வரையறை. அதுவே அழைக்கப்படுகிறது: .

உண்மையில், b என்ற எண்ணை ஒரு சக்தியாக உயர்த்தினால் என்ன நடக்கும், இந்த சக்திக்கு b என்ற எண் a எண்ணைக் கொடுக்கும்? அது சரி: முடிவு அதே எண் a. இந்தப் பத்தியை மீண்டும் கவனமாகப் படியுங்கள் - பலர் அதில் சிக்கிக் கொள்கிறார்கள்.

ஒரு புதிய தளத்திற்குச் செல்வதற்கான சூத்திரங்களைப் போலவே, அடிப்படை மடக்கை அடையாளம் சில சமயங்களில் சாத்தியமான ஒரே தீர்வு.

பணி. வெளிப்பாட்டின் பொருளைக் கண்டறியுங்கள்:

log25 64 = log5 8 - மடக்கையின் அடிப்படை மற்றும் வாதத்திலிருந்து சதுரத்தை எடுத்துக் கொண்டது என்பதை நினைவில் கொள்ளவும். ஒரே அடிப்படையுடன் சக்திகளை பெருக்குவதற்கான விதிகளை கணக்கில் எடுத்துக்கொள்வதால், நாம் பெறுகிறோம்:

யாருக்காவது தெரியாவிட்டால், இது ஒருங்கிணைந்த மாநிலத் தேர்வின் உண்மையான பணியாகும் :)

மடக்கை அலகு மற்றும் மடக்கை பூஜ்யம்

முடிவில், பண்புகள் என்று அழைக்கப்பட முடியாத இரண்டு அடையாளங்களை நான் தருகிறேன் - மாறாக, அவை மடக்கையின் வரையறையின் விளைவுகள். அவர்கள் தொடர்ந்து சிக்கல்களில் தோன்றுகிறார்கள், ஆச்சரியப்படும் விதமாக, "மேம்பட்ட" மாணவர்களுக்கு கூட சிக்கல்களை உருவாக்குகிறார்கள்.

  1. லோகா = 1 ஆகும். ஒருமுறை மற்றும் அனைத்தையும் நினைவில் கொள்ளுங்கள்: அந்த தளத்தின் எந்த தளத்திற்கும் மடக்கை ஒன்றுக்கு சமம்.
  2. லோகா 1 = 0 ஆகும். அடிப்படை a எதுவும் இருக்கலாம், ஆனால் வாதத்தில் ஒன்று இருந்தால், மடக்கை பூஜ்ஜியத்திற்கு சமம்! ஏனெனில் a0 = 1 என்பது வரையறையின் நேரடி விளைவு.

அவ்வளவுதான் சொத்துக்கள். அவற்றை நடைமுறைக்குக் கொண்டுவருவதைப் பயிற்சி செய்யுங்கள்! பாடத்தின் தொடக்கத்தில் உள்ள ஏமாற்று தாளைப் பதிவிறக்கம் செய்து, அதை அச்சிட்டு, சிக்கல்களைத் தீர்க்கவும்.

சமூகம் வளர்ச்சியடைந்து உற்பத்தி சிக்கலானதாக மாறியதால், கணிதமும் வளர்ந்தது. எளிமையானது முதல் சிக்கலானது வரை இயக்கம். கூட்டல் மற்றும் கழித்தல் முறையைப் பயன்படுத்தி சாதாரண கணக்கியலில் இருந்து, மீண்டும் மீண்டும் மீண்டும் செய்வதன் மூலம், பெருக்கல் மற்றும் வகுத்தல் என்ற கருத்துக்கு வந்தோம். பெருக்கத்தின் தொடர்ச்சியான செயல்பாட்டைக் குறைப்பது அதிவேகத்தின் கருத்தாக மாறியது. எண்களின் அடிப்படை மற்றும் அதிவேக எண்ணிக்கையின் முதல் அட்டவணைகள் 8 ஆம் நூற்றாண்டில் இந்திய கணிதவியலாளர் வரசேனாவால் தொகுக்கப்பட்டது. அவற்றிலிருந்து நீங்கள் மடக்கைகள் ஏற்படும் நேரத்தை எண்ணலாம்.

வரலாற்று ஓவியம்

16 ஆம் நூற்றாண்டில் ஐரோப்பாவின் மறுமலர்ச்சியும் இயக்கவியலின் வளர்ச்சியைத் தூண்டியது. டி ஒரு பெரிய அளவு கணக்கீடு தேவைபெருக்கல் மற்றும் வகுத்தல் தொடர்பானது பல இலக்க எண்கள். பழங்கால அட்டவணைகள் சிறந்த சேவையாக இருந்தன. சிக்கலான செயல்பாடுகளை எளிமையானவற்றுடன் மாற்றுவதை அவர்கள் சாத்தியமாக்கினர் - கூட்டல் மற்றும் கழித்தல். 1544 இல் வெளியிடப்பட்ட கணிதவியலாளர் மைக்கேல் ஸ்டீஃபலின் பணி ஒரு பெரிய படியாகும், அதில் அவர் பல கணிதவியலாளர்களின் யோசனையை உணர்ந்தார். இது படிவத்தில் உள்ள பட்டங்களுக்கு மட்டும் அட்டவணைகளைப் பயன்படுத்துவதை சாத்தியமாக்கியது முதன்மை எண்கள், ஆனால் தன்னிச்சையான பகுத்தறிவு உள்ளவர்களுக்கும்.

1614 ஆம் ஆண்டில், ஸ்காட்ஸ்மேன் ஜான் நேப்பியர், இந்த யோசனைகளை உருவாக்கி, முதலில் அறிமுகப்படுத்தினார் புதிய கால"ஒரு எண்ணின் மடக்கை." புதியது சிக்கலான அட்டவணைகள்சைன்கள் மற்றும் கொசைன்கள் மற்றும் தொடுகோடுகளின் மடக்கைகளை கணக்கிடுவதற்கு. இது வானியலாளர்களின் பணியை வெகுவாகக் குறைத்தது.

புதிய அட்டவணைகள் தோன்றத் தொடங்கின, அவை முழுவதும் விஞ்ஞானிகளால் வெற்றிகரமாகப் பயன்படுத்தப்பட்டன மூன்று நூற்றாண்டுகள். இதற்கு முன் நிறைய நேரம் கடந்துவிட்டது புதிய செயல்பாடுஇயற்கணிதத்தில் அது அதன் முழு வடிவத்தைப் பெற்றது. மடக்கையின் வரையறை கொடுக்கப்பட்டது மற்றும் அதன் பண்புகள் ஆய்வு செய்யப்பட்டது.

20 ஆம் நூற்றாண்டில், கால்குலேட்டர் மற்றும் கணினியின் வருகையுடன், 13 ஆம் நூற்றாண்டு முழுவதும் வெற்றிகரமாக வேலை செய்த பண்டைய அட்டவணைகளை மனிதகுலம் கைவிட்டது.

இன்று நாம் b இன் மடக்கையை a x என்ற எண்ணை அடிப்படையாகக் கொண்டுள்ளோம், இது b ஐ உருவாக்கும் சக்தியாகும். இது ஒரு சூத்திரமாக எழுதப்பட்டுள்ளது: x = log a(b).

எடுத்துக்காட்டாக, பதிவு 3(9) 2 க்கு சமமாக இருக்கும். நீங்கள் வரையறையைப் பின்பற்றினால் இது தெளிவாகத் தெரியும். நாம் 3 ஐ 2 இன் சக்திக்கு உயர்த்தினால், நமக்கு 9 கிடைக்கும்.

எனவே, வடிவமைக்கப்பட்ட வரையறை ஒரே ஒரு வரம்பை அமைக்கிறது: எண்கள் a மற்றும் b உண்மையானதாக இருக்க வேண்டும்.

மடக்கைகளின் வகைகள்

உன்னதமான வரையறை உண்மையான மடக்கை என்று அழைக்கப்படுகிறது மற்றும் உண்மையில் சமன்பாட்டிற்கான தீர்வு a x = b. விருப்பம் a = 1 என்பது எல்லைக்கோடு மற்றும் ஆர்வம் இல்லை. கவனம்: எந்த சக்திக்கும் 1 என்பது 1க்கு சமம்.

மடக்கையின் உண்மையான மதிப்புஅடிப்படை மற்றும் வாதம் 0 ஐ விட அதிகமாக இருக்கும்போது மட்டுமே வரையறுக்கப்படுகிறது, மேலும் அடிப்படை 1 க்கு சமமாக இருக்கக்கூடாது.

கணிதத் துறையில் தனி இடம்மடக்கைகளை இயக்கவும், அவை அவற்றின் தளத்தின் அளவைப் பொறுத்து பெயரிடப்படும்:

விதிகள் மற்றும் கட்டுப்பாடுகள்

மடக்கைகளின் அடிப்படைப் பண்பு விதி: ஒரு பொருளின் மடக்கை மடக்கைத் தொகைக்கு சமம். பதிவு abp = பதிவு a(b) + log a(p).

இந்த அறிக்கையின் மாறுபாடாக இது இருக்கும்: log c(b/p) = log c(b) - log c(p), quotient செயல்பாடு செயல்பாடுகளின் வேறுபாட்டிற்கு சமம்.

முந்தைய இரண்டு விதிகளிலிருந்து இதைப் பார்ப்பது எளிது: log a(b p) = p * log a(b).

மற்ற பண்புகள் அடங்கும்:

கருத்து. பொதுவான தவறைச் செய்யாதீர்கள் - தொகையின் மடக்கை இல்லை தொகைக்கு சமம்மடக்கைகள்.

பல நூற்றாண்டுகளாக, மடக்கைக் கண்டறிதல் என்பது நேரத்தை எடுத்துக்கொள்ளும் பணியாக இருந்தது. கணிதவியலாளர்கள் பல்லுறுப்புக்கோவை விரிவாக்கத்தின் மடக்கைக் கோட்பாட்டின் நன்கு அறியப்பட்ட சூத்திரத்தைப் பயன்படுத்தினர்:

ln (1 + x) = x — (x^2)/2 + (x^3)/3 — (x^4)/4 + … + ((-1)^(n + 1))*(( x^n)/n), எங்கே n - இயற்கை எண் 1 ஐ விட அதிகமாக உள்ளது, இது கணக்கீட்டின் துல்லியத்தை தீர்மானிக்கிறது.

மற்ற தளங்களுடனான மடக்கைகள் ஒரு தளத்திலிருந்து மற்றொரு தளத்திற்கு மாறுதல் மற்றும் தயாரிப்பின் மடக்கையின் பண்பு ஆகியவற்றின் தேற்றத்தைப் பயன்படுத்தி கணக்கிடப்பட்டன.

இந்த முறை மிகவும் உழைப்பு-தீவிரமானது மற்றும் நடைமுறை சிக்கல்களை தீர்க்கும் போதுசெயல்படுத்த கடினமாக உள்ளது, நாங்கள் முன் தொகுக்கப்பட்ட மடக்கை அட்டவணைகளைப் பயன்படுத்தினோம், இது அனைத்து வேலைகளையும் கணிசமாக துரிதப்படுத்தியது.

சில சந்தர்ப்பங்களில், மடக்கைகளின் சிறப்பாக தொகுக்கப்பட்ட வரைபடங்கள் பயன்படுத்தப்பட்டன, இது குறைவான துல்லியத்தை அளித்தது, ஆனால் விரும்பிய மதிப்பிற்கான தேடலை கணிசமாக துரிதப்படுத்தியது. y = log a(x) செயல்பாட்டின் வளைவு, பல புள்ளிகளில் கட்டமைக்கப்பட்டுள்ளது, வேறு எந்த புள்ளியிலும் செயல்பாட்டின் மதிப்பைக் கண்டறிய வழக்கமான ஆட்சியாளரைப் பயன்படுத்த உங்களை அனுமதிக்கிறது. பொறியாளர்கள் நீண்ட நேரம்இந்த நோக்கங்களுக்காக, வரைபட காகிதம் என்று அழைக்கப்படுபவை பயன்படுத்தப்பட்டன.

17 ஆம் நூற்றாண்டில், முதல் துணை அனலாக் கம்ப்யூட்டிங் நிலைமைகள் தோன்றின, இது 19 ஆம் நூற்றாண்டுமுடிக்கப்பட்ட தோற்றத்தைப் பெற்றது. மிகவும் வெற்றிகரமான சாதனம் ஸ்லைடு விதி என்று அழைக்கப்பட்டது. சாதனத்தின் எளிமை இருந்தபோதிலும், அதன் தோற்றம் அனைத்து பொறியியல் கணக்கீடுகளின் செயல்முறையையும் கணிசமாக துரிதப்படுத்தியது, மேலும் இது மிகைப்படுத்துவது கடினம். தற்போது, ​​சிலருக்கு இந்த சாதனம் தெரிந்திருக்கிறது.

கால்குலேட்டர்கள் மற்றும் கணினிகளின் வருகை மற்ற சாதனங்களைப் பயன்படுத்துவதை அர்த்தமற்றதாக்கியது.

சமன்பாடுகள் மற்றும் ஏற்றத்தாழ்வுகள்

மடக்கைகளைப் பயன்படுத்தி பல்வேறு சமன்பாடுகள் மற்றும் ஏற்றத்தாழ்வுகளைத் தீர்க்க, பின்வரும் சூத்திரங்கள் பயன்படுத்தப்படுகின்றன:

  • ஒரு தளத்திலிருந்து மற்றொன்றுக்கு மாறுதல்: பதிவு a(b) = log c(b) / log c(a);
  • முந்தைய விருப்பத்தின் விளைவாக: log a(b) = 1 / log b(a).

ஏற்றத்தாழ்வுகளைத் தீர்க்க, தெரிந்து கொள்வது பயனுள்ளது:

  • அடிப்படை மற்றும் வாதம் இரண்டும் ஒன்றுக்கு அதிகமாகவோ அல்லது குறைவாகவோ இருந்தால் மட்டுமே மடக்கையின் மதிப்பு நேர்மறையாக இருக்கும்; குறைந்தபட்சம் ஒரு நிபந்தனையை மீறினால், மடக்கை மதிப்பு எதிர்மறையாக இருக்கும்.
  • மடக்கைச் செயல்பாடு ஒரு சமத்துவமின்மையின் வலது மற்றும் இடது பக்கங்களுக்குப் பயன்படுத்தப்பட்டு, மடக்கையின் அடிப்பகுதி ஒன்றுக்கு அதிகமாக இருந்தால், சமத்துவமின்மையின் அடையாளம் பாதுகாக்கப்படுகிறது; இல்லையெனில் அது மாறுகிறது.

மாதிரி சிக்கல்கள்

மடக்கைகள் மற்றும் அவற்றின் பண்புகளைப் பயன்படுத்துவதற்கான பல விருப்பங்களைக் கருத்தில் கொள்வோம். சமன்பாடுகளைத் தீர்ப்பதற்கான எடுத்துக்காட்டுகள்:

மடக்கையை ஒரு சக்தியில் வைப்பதற்கான விருப்பத்தைக் கவனியுங்கள்:

  • சிக்கல் 3. 25^log 5(3)ஐக் கணக்கிடுக. தீர்வு: சிக்கலின் நிலைமைகளில், உள்ளீடு பின்வரும் (5^2)^log5(3) அல்லது 5^(2 * log 5(3)) போன்றது. அதை வேறு விதமாக எழுதுவோம்: 5^log 5(3*2), அல்லது ஒரு சார்பு வாதமாக ஒரு எண்ணின் வர்க்கத்தை செயல்பாட்டின் வர்க்கமாக எழுதலாம் (5^log 5(3))^2. மடக்கைகளின் பண்புகளைப் பயன்படுத்தி, இந்த வெளிப்பாடு 3^2 க்கு சமம். பதில்: கணக்கீட்டின் விளைவாக நாம் 9 ஐப் பெறுகிறோம்.

நடைமுறை பயன்பாடு

முற்றிலும் கணிதக் கருவியாக இருப்பதால், அது வெகு தொலைவில் உள்ளது உண்மையான வாழ்க்கைமடக்கை திடீரென்று வாங்கியது என்று பெரும் முக்கியத்துவம்பொருட்களை விவரிக்க நிஜ உலகம். பயன்படுத்தப்படாத அறிவியலைக் கண்டுபிடிப்பது கடினம். இது இயற்கைக்கு மட்டுமல்ல, மனிதாபிமான அறிவுத் துறைகளுக்கும் முழுமையாகப் பொருந்தும்.

மடக்கை சார்புகள்

எண் சார்புகளின் சில எடுத்துக்காட்டுகள் இங்கே:

இயக்கவியல் மற்றும் இயற்பியல்

வரலாற்று ரீதியாக, இயக்கவியல் மற்றும் இயற்பியல் எப்போதுமே கணித ஆராய்ச்சி முறைகளைப் பயன்படுத்தி உருவாக்கப்பட்டன, அதே நேரத்தில் மடக்கைகள் உட்பட கணிதத்தின் வளர்ச்சிக்கு ஊக்கமளிக்கின்றன. இயற்பியலின் பெரும்பாலான விதிகளின் கோட்பாடு கணிதத்தின் மொழியில் எழுதப்பட்டுள்ளது. விளக்கங்களுக்கு இரண்டு உதாரணங்களை மட்டும் தருவோம் உடல் சட்டங்கள்மடக்கையைப் பயன்படுத்தி.

ராக்கெட்டின் வேகம் போன்ற சிக்கலான அளவைக் கணக்கிடுவதில் உள்ள சிக்கலை, சியோல்கோவ்ஸ்கி சூத்திரத்தைப் பயன்படுத்தி தீர்க்க முடியும், இது விண்வெளி ஆய்வுக் கோட்பாட்டிற்கு அடித்தளம் அமைத்தது:

V = I * ln (M1/M2), எங்கே

  • V என்பது விமானத்தின் இறுதி வேகம்.
  • நான் - இயந்திரத்தின் குறிப்பிட்ட தூண்டுதல்.
  • எம் 1 - ராக்கெட்டின் ஆரம்ப நிறை.
  • M 2 - இறுதி நிறை.

மற்றொன்று முக்கியமான உதாரணம் - இது மற்றொரு சிறந்த விஞ்ஞானியான மேக்ஸ் பிளாங்கின் சூத்திரத்தில் பயன்படுத்தப்படுகிறது, இது வெப்ப இயக்கவியலில் சமநிலை நிலையை மதிப்பிட உதவுகிறது.

S = k * ln (Ω), எங்கே

  • எஸ் - வெப்ப இயக்கவியல் பண்பு.
  • கே - போல்ட்ஸ்மேன் மாறிலி.
  • Ω என்பது வெவ்வேறு மாநிலங்களின் புள்ளிவிவர எடை.

வேதியியல்

மடக்கைகளின் விகிதத்தைக் கொண்ட வேதியியலில் சூத்திரங்களைப் பயன்படுத்துவது குறைவான வெளிப்படையானது. இரண்டு உதாரணங்களை மட்டும் தருவோம்:

  • நெர்ன்ஸ்ட் சமன்பாடு, பொருட்களின் செயல்பாடு மற்றும் சமநிலை மாறிலி ஆகியவற்றுடன் தொடர்புடைய ஊடகத்தின் ரெடாக்ஸ் திறனின் நிலை.
  • ஆட்டோலிசிஸ் இன்டெக்ஸ் மற்றும் கரைசலின் அமிலத்தன்மை போன்ற மாறிலிகளின் கணக்கீடும் நமது செயல்பாடு இல்லாமல் செய்ய முடியாது.

உளவியல் மற்றும் உயிரியல்

மேலும் உளவியலுக்கும் இதற்கும் என்ன சம்பந்தம் என்பது தெளிவாகத் தெரியவில்லை. இந்தச் செயல்பாட்டின் மூலம் உணர்வின் வலிமையானது தூண்டுதலின் தீவிர மதிப்பின் தலைகீழ் விகிதமாக குறைந்த தீவிர மதிப்புக்கு நன்கு விவரிக்கப்பட்டுள்ளது.

மேலே உள்ள எடுத்துக்காட்டுகளுக்குப் பிறகு, மடக்கைகளின் தலைப்பு உயிரியலில் பரவலாகப் பயன்படுத்தப்படுவதில் ஆச்சரியமில்லை. மடக்கைச் சுழல்களுடன் தொடர்புடைய உயிரியல் வடிவங்களைப் பற்றி முழு தொகுதிகளும் எழுதப்படலாம்.

மற்ற பகுதிகள்

இந்த செயல்பாட்டுடன் தொடர்பு இல்லாமல் உலகின் இருப்பு சாத்தியமற்றது என்று தோன்றுகிறது, மேலும் அது அனைத்து சட்டங்களையும் கட்டுப்படுத்துகிறது. குறிப்பாக இயற்கையின் விதிகள் தொடர்புடையதாக இருக்கும் போது வடிவியல் முன்னேற்றம். MatProfi வலைத்தளத்திற்குத் திரும்புவது மதிப்புக்குரியது, மேலும் பின்வரும் செயல்பாடுகளில் இதுபோன்ற பல எடுத்துக்காட்டுகள் உள்ளன:

பட்டியல் முடிவற்றதாக இருக்கலாம். இந்த செயல்பாட்டின் அடிப்படைக் கொள்கைகளில் தேர்ச்சி பெற்ற பிறகு, நீங்கள் எல்லையற்ற ஞானத்தின் உலகில் மூழ்கலாம்.


இந்தக் கட்டுரையின் மையக்கரு மடக்கை. இங்கே நாம் ஒரு மடக்கையின் வரையறையை வழங்குவோம், ஏற்றுக்கொள்ளப்பட்ட குறியீட்டைக் காண்பிப்போம், மடக்கைகளின் எடுத்துக்காட்டுகளைக் கொடுப்போம் மற்றும் இயற்கை மற்றும் தசம மடக்கைகளைப் பற்றி பேசுவோம். இதற்குப் பிறகு நாம் அடிப்படை மடக்கை அடையாளத்தைக் கருத்தில் கொள்வோம்.

பக்க வழிசெலுத்தல்.

மடக்கையின் வரையறை

ஒரு சிக்கலைத் தீர்க்கும்போது மடக்கை என்ற கருத்து எழுகிறது ஒரு குறிப்பிட்ட அர்த்தத்தில்தலைகீழ், நீங்கள் அடுக்கு கண்டுபிடிக்க வேண்டும் போது அறியப்பட்ட மதிப்புபட்டம் மற்றும் அறியப்பட்ட அடிப்படை.

ஆனால் போதுமான முன்னுரைகள், "ஒரு மடக்கை என்றால் என்ன" என்ற கேள்விக்கு பதிலளிக்க வேண்டிய நேரம் இது? அதற்கான வரையறையை தருவோம்.

வரையறை.

b இன் மடக்கை முதல் a அடிப்படை, இதில் a>0, a≠1 மற்றும் b>0 என்பது இதன் விளைவாக b பெற, a எண்ணை உயர்த்த வேண்டிய அடுக்கு ஆகும்.

இந்த கட்டத்தில், "மடக்கை" என்ற பேச்சு வார்த்தை உடனடியாக இரண்டு பின்தொடர்தல் கேள்விகளை எழுப்ப வேண்டும் என்பதை நாங்கள் கவனிக்கிறோம்: "எந்த எண்" மற்றும் "எந்த அடிப்படையில்." வேறு வார்த்தைகளில் கூறுவதானால், வெறுமனே மடக்கை இல்லை, ஆனால் ஒரு எண்ணின் மடக்கை சில அடிப்படைக்கு மட்டுமே.

உடனே நுழைவோம் மடக்கை குறியீடு: ஒரு எண்ணின் b முதல் a அடிப்படையிலான மடக்கை பொதுவாக log a b எனக் குறிக்கப்படுகிறது. ஒரு எண்ணின் b முதல் e வரையிலான மடக்கை மற்றும் அடிப்படை 10 வரையிலான மடக்கை முறையே lnb மற்றும் logb ஆகியவை அவற்றின் சொந்த சிறப்புக் குறியீடுகளைக் கொண்டுள்ளன, அதாவது அவை log e b அல்ல, ஆனால் lnb, மற்றும் பதிவு 10 b அல்ல, ஆனால் lgb.

இப்போது நாம் கொடுக்க முடியும்: .
மற்றும் பதிவுகள் அர்த்தமுள்ளதாக இல்லை, ஏனென்றால் அவற்றில் முதலாவது மடக்கையின் அடையாளத்தின் கீழ் உள்ளது எதிர்மறை எண், இரண்டாவதில் அடிப்பகுதியில் எதிர்மறை எண் உள்ளது, மூன்றில் மடக்கை குறியின் கீழ் எதிர்மறை எண் மற்றும் அடிப்பகுதியில் ஒரு அலகு உள்ளது.

இப்போது பேசலாம் மடக்கைகளைப் படிப்பதற்கான விதிகள். குறிப்பேடு a b என்பது "b இன் மடக்கை ஒரு அடிப்படை a" என்று படிக்கப்படுகிறது. எடுத்துக்காட்டாக, பதிவு 2 3 என்பது மூன்று முதல் அடிப்படை 2 வரையிலான மடக்கையாகும், மேலும் இது அடிப்படை 2 முதல் மூன்றில் இரண்டு பங்கு மடக்கை ஆகும். சதுர வேர்ஐந்தில். e அடிப்படைக்கான மடக்கை அழைக்கப்படுகிறது இயற்கை மடக்கை, மற்றும் lnb உள்ளீடு " இயற்கை மடக்கை b". எடுத்துக்காட்டாக, ln7 என்பது ஏழின் இயற்கை மடக்கை, மேலும் அதை பையின் இயற்கை மடக்கையாகப் படிப்போம். அடிப்படை 10 மடக்கைக்கு ஒரு சிறப்புப் பெயர் உள்ளது - தசம மடக்கை, மற்றும் lgb என்பது "b இன் தசம மடக்கை" என வாசிக்கப்படுகிறது. எடுத்துக்காட்டாக, lg1 என்பது ஒன்றின் தசம மடக்கை, மற்றும் lg2.75 என்பது இரண்டு புள்ளி ஏழு ஐந்நூறில் ஒரு தசம மடக்கை ஆகும்.

மடக்கையின் வரையறை கொடுக்கப்பட்டுள்ள a>0, a≠1 மற்றும் b>0 ஆகிய நிபந்தனைகளில் தனித்தனியாக இருப்பது மதிப்பு. இந்த கட்டுப்பாடுகள் எங்கிருந்து வருகின்றன என்பதை விளக்குவோம். மேலே கொடுக்கப்பட்ட மடக்கையின் வரையறையிலிருந்து நேரடியாகப் பின்பற்றப்படும் படிவத்தின் சமத்துவம் இதைச் செய்ய உதவும்.

a≠1 உடன் தொடங்குவோம். ஒன்று எந்த சக்திக்கும் ஒன்றுக்கு சமம் என்பதால், சமத்துவம் b=1 ஆக இருக்கும் போது மட்டுமே உண்மையாக இருக்கும், ஆனால் பதிவு 1 1 எந்த உண்மையான எண்ணாகவும் இருக்கலாம். இந்த தெளிவின்மையை தவிர்க்க, a≠1 கருதப்படுகிறது.

a>0 நிபந்தனையின் பயனை நியாயப்படுத்துவோம். a=0 உடன், ஒரு மடக்கையின் வரையறையின்படி, நாம் சமத்துவத்தைப் பெறுவோம், இது b=0 உடன் மட்டுமே சாத்தியமாகும். ஆனால் 0 0 என்பது பூஜ்ஜியம் அல்லாத உண்மையான எண்ணாக இருக்கலாம், ஏனெனில் பூஜ்ஜியம் அல்லாத எந்த சக்தியும் பூஜ்ஜியமாகும். a≠0 நிபந்தனை இந்த தெளிவின்மையைத் தவிர்க்க அனுமதிக்கிறது. மற்றும் போது ஒரு<0 нам бы пришлось отказаться от рассмотрения рациональных и иррациональных значений логарифма, так как степень с рациональным и иррациональным показателем определена лишь для неотрицательных оснований. Поэтому и принимается условие a>0 .

இறுதியாக, b>0 என்பது சமத்துவமின்மை a>0 என்பதிலிருந்து பின்தொடர்கிறது.

இந்த புள்ளியை முடிக்க, மடக்கையின் குறிப்பிடப்பட்ட வரையறை, மடக்கை அடையாளத்தின் கீழ் உள்ள எண் அடித்தளத்தின் ஒரு குறிப்பிட்ட சக்தியாக இருக்கும்போது மடக்கையின் மதிப்பை உடனடியாகக் குறிக்க உங்களை அனுமதிக்கிறது என்று சொல்லலாம். உண்மையில், ஒரு மடக்கையின் வரையறையானது, b=a p எனில், b என்ற எண்ணின் மடக்கை a அடிப்படை a க்கு சமம் என்று கூற அனுமதிக்கிறது. அதாவது சமத்துவ பதிவு a a p =p உண்மை. எடுத்துக்காட்டாக, 2 3 =8, பின்னர் 2 8=3 என்பதை நாம் அறிவோம். இதைப் பற்றி மேலும் கட்டுரையில் பேசுவோம்.

மடக்கை என்றால் என்ன?

கவனம்!
கூடுதல் உள்ளன
சிறப்புப் பிரிவு 555 இல் உள்ள பொருட்கள்.
மிகவும் "மிகவும் இல்லை..." என்று இருப்பவர்களுக்கு.
மேலும் “மிகவும்…” இருப்பவர்களுக்கு)

மடக்கை என்றால் என்ன? மடக்கைகளை எவ்வாறு தீர்ப்பது? இந்த கேள்விகள் பல பட்டதாரிகளை குழப்புகின்றன. பாரம்பரியமாக, மடக்கைகளின் தலைப்பு சிக்கலான, புரிந்துகொள்ள முடியாத மற்றும் பயமுறுத்துவதாக கருதப்படுகிறது. குறிப்பாக மடக்கைகளுடன் கூடிய சமன்பாடுகள்.

இது முற்றிலும் உண்மை இல்லை. முற்றிலும்! என்னை நம்பவில்லையா? நன்றாக. இப்போது, ​​வெறும் 10 - 20 நிமிடங்களில் நீங்கள்:

1. புரிந்து கொள்ளுங்கள் மடக்கை என்றால் என்ன.

2. முழு வகுப்பையும் தீர்க்க கற்றுக்கொள்ளுங்கள் அதிவேக சமன்பாடுகள். நீங்கள் அவர்களைப் பற்றி எதுவும் கேட்காவிட்டாலும் கூட.

3. எளிய மடக்கைகளை கணக்கிட கற்றுக்கொள்ளுங்கள்.

மேலும், இதற்காக நீங்கள் பெருக்கல் அட்டவணை மற்றும் ஒரு எண்ணை எவ்வாறு சக்தியாக உயர்த்துவது என்பதை மட்டும் தெரிந்து கொள்ள வேண்டும்.

உங்களுக்கு சந்தேகம் இருப்பது போல் உணர்கிறேன்... சரி, நேரம் குறிக்கவும்! போ!

முதலில், இந்த சமன்பாட்டை உங்கள் தலையில் தீர்க்கவும்:

இந்த தளம் உங்களுக்கு பிடித்திருந்தால்...

உங்களுக்காக இன்னும் இரண்டு சுவாரஸ்யமான தளங்கள் என்னிடம் உள்ளன.)

உதாரணங்களைத் தீர்ப்பதில் நீங்கள் பயிற்சி செய்யலாம் மற்றும் உங்கள் நிலையைக் கண்டறியலாம். உடனடி சரிபார்ப்புடன் சோதனை. கற்றுக்கொள்வோம் - ஆர்வத்துடன்!)

செயல்பாடுகள் மற்றும் வழித்தோன்றல்களைப் பற்றி நீங்கள் அறிந்து கொள்ளலாம்.

(கிரேக்க மொழியில் இருந்து λόγος - "சொல்", "உறவு" மற்றும் ἀριθμός - "எண்") எண்கள் பிஅடிப்படையில் (பதிவு α பி) அத்தகைய எண் என்று அழைக்கப்படுகிறது c, மற்றும் பி= ஒரு சி, அதாவது, பதிவுகள் பதிவு α பி=cமற்றும் b=acசமமானவை. a > 0, a ≠ 1, b > 0 எனில் மடக்கை அர்த்தமுள்ளதாக இருக்கும்.

வேறு வார்த்தைகளில் கூறுவதானால் மடக்கைஎண்கள் பிஅடிப்படையில் ஒரு எண்ணை உயர்த்த வேண்டிய அதிவேகமாக வடிவமைக்கப்பட்டுள்ளது எண் பெற பி(மொகரிதம் நேர்மறை எண்களுக்கு மட்டுமே உள்ளது).

இந்த உருவாக்கத்தில் இருந்து x= log α கணக்கீடு செய்யப்படுகிறது பி, a x =b சமன்பாட்டைத் தீர்ப்பதற்குச் சமம்.

உதாரணத்திற்கு:

பதிவு 2 8 = 3 ஏனெனில் 8 = 2 3 .

மடக்கையின் சுட்டிக்காட்டப்பட்ட உருவாக்கம் உடனடியாக தீர்மானிக்க உதவுகிறது என்பதை வலியுறுத்துவோம் மடக்கை மதிப்பு, மடக்கை அடையாளத்தின் கீழ் உள்ள எண் அடித்தளத்தின் ஒரு குறிப்பிட்ட சக்தியாக செயல்படும் போது. உண்மையில், மடக்கையின் உருவாக்கம் அதை நியாயப்படுத்துவதை சாத்தியமாக்குகிறது b=a c, பின்னர் எண்ணின் மடக்கை பிஅடிப்படையில் சமம் உடன். மடக்கைகளின் தலைப்பு தலைப்புடன் நெருக்கமாக தொடர்புடையது என்பதும் தெளிவாகிறது ஒரு எண்ணின் சக்திகள்.

மடக்கை கணக்கிடுவது அழைக்கப்படுகிறது மடக்கை. மடக்கை என்பது ஒரு மடக்கையை எடுக்கும் கணித செயல்பாடு ஆகும். மடக்கைகளை எடுக்கும்போது, ​​காரணிகளின் தயாரிப்புகள் சொற்களின் தொகைகளாக மாற்றப்படுகின்றன.

ஆற்றல்மடக்கைக்கு நேர்மாறான ஒரு கணித செயல்பாடு ஆகும். ஆற்றலின் போது, ​​கொடுக்கப்பட்ட அடிப்படையானது ஆற்றலை நிகழ்த்தும் வெளிப்பாட்டின் அளவிற்கு உயர்த்தப்படுகிறது. இந்த வழக்கில், சொற்களின் தொகைகள் காரணிகளின் விளைபொருளாக மாற்றப்படுகின்றன.

பெரும்பாலும், உண்மையான மடக்கைகள் அடிப்படைகள் 2 (பைனரி), யூலரின் எண் e ≈ 2.718 (இயற்கை மடக்கை) மற்றும் 10 (தசமம்) ஆகியவற்றுடன் பயன்படுத்தப்படுகின்றன.

அன்று இந்த கட்டத்தில்கருத்தில் கொள்வது நல்லது மடக்கை மாதிரிகள்பதிவு 7 2 , ln 5, lg0.0001.

மற்றும் உள்ளீடுகள் lg (-3), log -3 3.2, log -1 -4.3 ஆகியவை அர்த்தமற்றவை, ஏனெனில் அவற்றில் முதலாவதாக ஒரு எதிர்மறை எண் மடக்கையின் அடையாளத்தின் கீழ் வைக்கப்படுகிறது, இரண்டாவதாக எதிர்மறை எண் உள்ளது. அடிவாரத்தில், மற்றும் மூன்றில் மடக்கை குறியின் கீழ் எதிர்மறை எண் மற்றும் அடிப்பகுதியில் அலகு உள்ளது.

மடக்கை நிர்ணயம் செய்வதற்கான நிபந்தனைகள்.

a > 0, a ≠ 1, b > 0 ஆகிய நிபந்தனைகளைத் தனித்தனியாகக் கருத்தில் கொள்வது மதிப்பு. மடக்கையின் வரையறை.இந்தக் கட்டுப்பாடுகள் எதற்காக எடுக்கப்பட்டன என்பதைப் பார்ப்போம். x = log α வடிவத்தின் சமத்துவம் இதற்கு நமக்கு உதவும் பி, அடிப்படை மடக்கை அடையாளம் என்று அழைக்கப்படுகிறது, இது மேலே கொடுக்கப்பட்ட மடக்கையின் வரையறையிலிருந்து நேரடியாகப் பின்பற்றப்படுகிறது.

நிபந்தனையை எடுத்துக் கொள்வோம் a≠1. எந்த சக்திக்கும் ஒன்று ஒன்றுக்கு சமம் என்பதால், சமத்துவம் x=log α பிஎப்போது மட்டுமே இருக்க முடியும் b=1, ஆனால் பதிவு 1 1 உண்மையான எண்ணாக இருக்கும். இந்த தெளிவின்மையை அகற்ற, நாங்கள் எடுத்துக்கொள்கிறோம் a≠1.

நிபந்தனையின் அவசியத்தை நிரூபிப்போம் a>0. மணிக்கு a=0மடக்கையின் உருவாக்கத்தின் படி மட்டுமே இருக்க முடியும் b=0. அதன்படி பின்னர் பதிவு 0 0பூஜ்ஜியமற்ற உண்மையான எண்ணாக இருக்கலாம், ஏனெனில் பூஜ்ஜியமற்ற எந்த சக்தியும் பூஜ்ஜியமாகும். இந்த தெளிவின்மை நிபந்தனையால் அகற்றப்படலாம் a≠0. பிறகு எப்போது அ<0 மடக்கையின் பகுத்தறிவு மற்றும் பகுத்தறிவற்ற மதிப்புகளின் பகுப்பாய்வை நாம் நிராகரிக்க வேண்டும், ஏனெனில் பகுத்தறிவு மற்றும் பகுத்தறிவற்ற அடுக்கு கொண்ட பட்டம் எதிர்மறை அல்லாத அடிப்படைகளுக்கு மட்டுமே வரையறுக்கப்படுகிறது. இதன் காரணமாகவே இந்த நிபந்தனை விதிக்கப்பட்டுள்ளது a>0.

மற்றும் கடைசி நிபந்தனை b>0சமத்துவமின்மையிலிருந்து பின்பற்றுகிறது a>0, x=log α என்பதால் பி, மற்றும் நேர்மறை அடிப்படையுடன் பட்டத்தின் மதிப்பு எப்போதும் நேர்மறை.

மடக்கைகளின் அம்சங்கள்.

மடக்கைகள்தனித்தன்மை வாய்ந்தது அம்சங்கள், இது கடினமான கணக்கீடுகளை கணிசமாக எளிதாக்குவதற்கு அவற்றின் பரவலான பயன்பாட்டிற்கு வழிவகுத்தது. "மடக்கை உலகத்திற்கு" நகரும் போது, ​​பெருக்கல் மிகவும் எளிதான கூட்டலாக மாற்றப்படுகிறது, வகுத்தல் கழித்தல் ஆக மாற்றப்படுகிறது, மற்றும் அடுக்கு மற்றும் வேர் பிரித்தெடுத்தல் முறையே, அடுக்கு மூலம் பெருக்கல் மற்றும் வகுத்தல் என மாற்றப்படுகிறது.

மடக்கைகளின் உருவாக்கம் மற்றும் அவற்றின் மதிப்புகளின் அட்டவணை (க்கு முக்கோணவியல் செயல்பாடுகள்) முதன்முதலில் 1614 இல் ஸ்காட்டிஷ் கணிதவியலாளர் ஜான் நேப்பியரால் வெளியிடப்பட்டது. மடக்கை அட்டவணைகள், மற்ற விஞ்ஞானிகளால் விரிவுபடுத்தப்பட்டு விரிவாக, அறிவியல் மற்றும் பொறியியல் கணக்கீடுகளில் பரவலாகப் பயன்படுத்தப்பட்டன, மேலும் மின்னணு கால்குலேட்டர்கள் மற்றும் கணினிகளின் பயன்பாடு வரை பொருத்தமானதாகவே இருந்தன.

© 2024 skudelnica.ru -- காதல், துரோகம், உளவியல், விவாகரத்து, உணர்வுகள், சண்டைகள்